Publications

Filters: First Letter Of Keyword is D and Author is Ibrahim, Joseph G  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Data Interpretation, Statistical
Chen, Ming-Hui, Joseph G. Ibrahim, Donglin Zeng, Kuolung Hu, and Catherine Jia. "Bayesian design of superiority clinical trials for recurrent events data with applications to bleeding and transfusion events in myelodyplastic syndrome." Biometrics 70, no. 4 (2014): 1003-13.
Chen, Qingxia, Ming-Hui Chen, David Ohlssen, and Joseph G. Ibrahim. "Bayesian modeling and inference for clinical trials with partial retrieved data following dropout." Stat Med 32, no. 24 (2013): 4180-95.
Chen, Qingxia, Donglin Zeng, Joseph G. Ibrahim, Ming-Hui Chen, Zhiying Pan, and Xiaodong Xue. "Quantifying the average of the time-varying hazard ratio via a class of transformations." Lifetime Data Anal 21, no. 2 (2015): 259-79.
Wu, Jing, Ming-Hui Chen, Elizabeth D. Schifano, Joseph G. Ibrahim, and Jeffrey D. Fisher. "A new Bayesian joint model for longitudinal count data with many zeros, intermittent missingness, and dropout with applications to HIV prevention trials." Stat Med 38, no. 30 (2019): 5565-5586.
Psioda, Matthew A., Mat Soukup, and Joseph G. Ibrahim. "A practical Bayesian adaptive design incorporating data from historical controls." Stat Med 37, no. 27 (2018): 4054-4070.
Chen, Liddy M., Joseph G. Ibrahim, and Haitao Chu. "Sample size determination in shared frailty models for multivariate time-to-event data." J Biopharm Stat 24, no. 4 (2014): 908-23.
Diao, Guoqing, Jun Dong, Donglin Zeng, Chunlei Ke, Alan Rong, and Joseph G. Ibrahim. "Biomarker threshold adaptive designs for survival endpoints." J Biopharm Stat 28, no. 6 (2018): 1038-1054.
Chen, Ming-Hui, Joseph G. Ibrahim, Peter Lam, Alan Yu, and Yuanye Zhang. "Bayesian design of noninferiority trials for medical devices using historical data." Biometrics 67, no. 3 (2011): 1163-70.
Ibrahim, Joseph G., Ming-Hui Chen, Mani Lakshminarayanan, Guanghan F. Liu, and Joseph F. Heyse. "Bayesian probability of success for clinical trials using historical data." Stat Med 34, no. 2 (2015): 249-64.