Secondary outcome analysis for data from an outcome-dependent sampling design.

TitleSecondary outcome analysis for data from an outcome-dependent sampling design.
Publication TypeJournal Article
Year of Publication2018
AuthorsPan, Yinghao, Jianwen Cai, Matthew P. Longnecker, and Haibo Zhou
JournalStat Med
Volume37
Issue15
Pagination2321-2337
Date Published2018 07 10
ISSN1097-0258
KeywordsCongenital Abnormalities, Data Interpretation, Statistical, Female, Humans, Infant, Newborn, Models, Statistical, Outcome Assessment, Health Care, Pregnancy, Probability, Risk Factors, Sampling Studies, Treatment Outcome
Abstract

Outcome-dependent sampling (ODS) scheme is a cost-effective way to conduct a study. For a study with continuous primary outcome, an ODS scheme can be implemented where the expensive exposure is only measured on a simple random sample and supplemental samples selected from 2 tails of the primary outcome variable. With the tremendous cost invested in collecting the primary exposure information, investigators often would like to use the available data to study the relationship between a secondary outcome and the obtained exposure variable. This is referred as secondary analysis. Secondary analysis in ODS designs can be tricky, as the ODS sample is not a random sample from the general population. In this article, we use the inverse probability weighted and augmented inverse probability weighted estimating equations to analyze the secondary outcome for data obtained from the ODS design. We do not make any parametric assumptions on the primary and secondary outcome and only specify the form of the regression mean models, thus allow an arbitrary error distribution. Our approach is robust to second- and higher-order moment misspecification. It also leads to more precise estimates of the parameters by effectively using all the available participants. Through simulation studies, we show that the proposed estimator is consistent and asymptotically normal. Data from the Collaborative Perinatal Project are analyzed to illustrate our method.

DOI10.1002/sim.7672
Alternate JournalStat Med
Original PublicationSecondary outcome analysis for data from an outcome-dependent sampling design.
PubMed ID29682775
PubMed Central IDPMC6130921
Grant ListP01 CA142538 / CA / NCI NIH HHS / United States
P30 ES010126 / ES / NIEHS NIH HHS / United States
R01 ES021900 / ES / NIEHS NIH HHS / United States
Project: