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 Assume that we test a single null hypothesis at significance level   
𝛼 = 0.05, 

• What is the maximum Type I error rate? 0.05 

 If we have two null hypotheses and do two independent tests, 
each at level 𝛼 = 0.05, 

• What is the probability of rejecting at least one true null hypothesis? 

 Pr reject at least one true null  = 1 − Pr reject neither true null  

  = 1 − 0.952 

  = 0.0975 > 0.05   

• The Type I error rate is almost doubled 

 One possible solution: Test each hypothesis at level 𝛼 2 = 0.025 
(Bonferroni test, see later). Then, 

 Pr reject at least one true null  = 0.0494 < 0.05  

Type I Error Rate Inflation 
Simple example with two hypotheses 
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Type I Error Rate Inflation 
More than two hypotheses 

Probability of at least one Type I error  

for different number of hypotheses 𝑚 and significance levels 𝛼  

• Probability for Type I error 

increases with larger 

values of 𝑚 and 𝛼 

 

• Example:  

For 𝑚 = 10 and 𝛼 = 0.05, 

the probability of at least 

one Type I error is 40.1%  

 

• For large 𝑚 we almost 

surely reject incorrectly at 

least one null hypothesis 
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 Multiple test problems are very common in clinical trials 

 Example applications include the comparsion of a new 
treatment with 

• Several other treatments 

• A control for more than one endpoint 

• A control for more than one population 

• A control repeatedly in time 

• ... (or any combination thereof) 

 Multiple test problems in clinical trials are very diverse 
and many different methods are available 

Sources of Multiplicity 
Overview 
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 Reducing the degree of multiplicity by 

• Addressing a limited number of questions only 

• Minimizing number of variables, using composite endpoints, 
summary statistics, ... 

• Prioritizing questions 

 

 If multiplicity still persists 

• Multiplicity adjustment should always be considered 

• Regulatory guidance (see Appendix) requires a description of the 
multiplicity adjustment in Phase III study protocols 

• If not thought necessary, explain why 

Dealing with Multiplicity 
 

7  | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved 



8  | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved 

 Introduction 

 Common Multiple Test Procedures 

• Basic concepts 

• Procedures by  

- Bonferroni, Holm  

- Simes, Hochberg 

- Dunnett, stepwise Dunnett 

 Hierarchical Test Procedure 

 Closed Test Procedure 

 Graphical Approach 

 Summary and Conclusions 



9  | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved 

 Introduction 

 Common Multiple Test Procedures 

• Basic concepts 

• Procedures by  

- Bonferroni, Holm  

- Simes, Hochberg 

- Dunnett, stepwise Dunnett 

 Hierarchical Test Procedure 

 Closed Test Procedure 

 Graphical Approach 

 Summary and Conclusions 



 Assume a “family” of 𝑚 inferences 

 Parameters of interest are 𝜃1, … , 𝜃𝑚 

 Individual null hypotheses 

𝐻1: 𝜃1 = 0,… ,𝐻𝑚: 𝜃𝑚 = 0 

 Example: 

• Comparison of 𝑚 treatments with a control therapy 

• Then, 𝜃𝑖 = 𝜇𝑖 − 𝜇0 are the 𝑚 treatment effect differences of 
interest, where  

- 𝜇𝑖 denotes the effect for treatment 𝑖 = 1, … ,𝑚 

- 𝜇0 denotes the effect for the control therapy 

Basic Concepts 
Notation 
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 Need to extend the usual Type I error rate concept 
when testing a family of null hypotheses 𝐻1, … ,𝐻𝑚 

 A multiple test procedure is said to control the FWER at 
level 𝛼 (in the strong sense) if 

Pr reject at least one true null ≤ 𝛼  

under any configuration of true/false null hypotheses 

 

Basic Concepts 
Family-wise error rate (FWER) 

11  | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved 



 Adjusted p-values extend ordinary (i.e. unadjusted) p-
values by adjusting them for a given multiple test procedure 

• Adjusted p-values can be compared directly with the significance level 
𝛼, while controlling the FWER  

 Formally, the adjusted p-value is the smallest significance 
level at which a given hypothesis is significant as part of 
the multiple test procedure 

 Example: Bonferroni method 

𝑝𝑖 ≤ 𝛼 𝑚    ⇔    𝑞𝑖 = min 𝑚𝑝𝑖 , 1 ≤ 𝛼 

 where 𝑝𝑖 is the ordinary and 𝑞𝑖 the adjusted p-value for 
𝑖 = 1,… ,𝑚 

Basic Concepts 
Adjusted p-values 
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 Single step methods 

 The rejection or non-rejection of a single hypothesis does not depend 

on the decision on any other hypothesis. 
 

 Examples: Bonferroni, Simes, Dunnett, … 

 

 Stepwise methods 

 The rejection or non-rejection of a particular hypothesis may depend 

on the decision on other hypotheses.  
  

 Examples: Holm, Hochberg, stepdown Dunnett, … 

Basic Concepts 
Single step and stepwise test procedures 
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 Use 𝛼 𝑚  for all inferences; for 𝑖 = 1,… ,𝑚: 

Reject 𝐻𝑖 if 𝑝𝑖 ≤ 𝛼 𝑚  

 Example: With 𝑚 = 3, p-values must be less than 
0.05 3 = 0.0167 in order to be “significant”  

 With adjusted p-values 𝑞𝑖 = min 𝑚𝑝𝑖 , 1 , 

Reject 𝐻𝑖 if 𝑞𝑖 ≤ 𝛼 

• Note that 𝑚𝑝𝑖 > 1 is possible and we thus need to truncate the 
adjusted p-avlues at 1, resulting in the minimum expression 

 Both rejection rules above lead to the same test decisions 

Bonferroni Method 
Overview 
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Bonferroni Method 
Rationale 

 The Bonferroni method follows from 
the Boole’s inequality 

 Pr  𝐴𝑖𝑖 ≤  Pr 𝐴𝑖𝑖    

where 𝐴𝑖 = 𝑝𝑖 ≤ 𝛼 𝑚  denotes the 
event of rejecting 𝐻𝑖 

 
 

 For 𝑚 = 2,  

 FWER = Pr 𝑝1 ≤ 𝛼 2 or 𝑝2 ≤ 𝛼 2   𝐻1, 𝐻2 are true  

 ≤ Pr 𝑝1 ≤ 𝛼 2  𝐻1is true + Pr 𝑝2 ≤ 𝛼 2  𝐻2is true  

 =2𝛼 2 = 𝛼 

𝐴1 𝐴2 

Pr 𝐴1 ∪ 𝐴2 ≤Pr 𝐴1 + Pr 𝐴2  

16  | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved 



 The Bonferroni method is a single step procedure 

 It is rather conservative if:  

• The number of hypotheses is large  

• The test statistics are strongly positively correlated 

 The Bonferroni method can be improved: 

• Stepwise methods (e.g. Holm procedure; see later)  

• Accounting for correlations (e.g. Dunnett test; see later) 

 While Bonferroni is rarely used in practice, it is the basis 
for commonly used advanced multiple test procedures 

Bonferroni Method 
Properties 
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 Assume p-values 0.0121, 0.0142, 0.0191, 0.1986 

 Applying Bonferroni, we use 0.05 4 = 0.0125 and reject 𝐻1 

 However, having rejected 𝐻1 using 0.05 4 , you no longer 
believe that all four null hypotheses can be true   

 You now think only 𝐻2, 𝐻3, 𝐻4 can be true   

 So, test 𝐻2 using 0.05 3 = 0.0167, rather than 0.05 4  

Holm Procedure 
Simplistic explanation 
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 Let 𝑝 1 ≤ ⋯ ≤ 𝑝 𝑚  denote the ordered unadjusted p-

values with associated null hypotheses 𝐻 1 , … ,𝐻 𝑚  

 Then we have the following stepwise procedure: 

• If 𝑝 1 ≤ 𝛼 𝑚 , reject 𝐻 1  and continue; else stop 

• If 𝑝 2 ≤ 𝛼 𝑚 − 1 , reject 𝐻 2  and continue; else stop 

• … 

• If 𝑝 𝑖 ≤ 𝛼 𝑚 − 𝑖 + 1 , reject 𝐻 𝑖  and continue; else stop 

• … 

• If 𝑝 𝑚 ≤ 𝛼, reject 𝐻 𝑚  

Holm Procedure 
Overview 
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 The Holm procedure is a stepwise procedure that is more 
powerful than the Bonferroni method 

• Bonferroni uses the same threshold 𝛼 𝑚  for all hypotheses  

• Holm uses the larger thresholds 𝛼 𝑚 − 𝑖 + 1  

 Sometimes called “stepdown Bonferroni” procedure 

 The Holm procedure can be improved by accounting for 
correlations (e.g. stepdown Dunnett test; see later) 

Holm Procedure 
Properties 
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 With 𝑝 1 ≤ ⋯ ≤ 𝑝 𝑚 , define adjusted p-values using 

• 𝑞 1 = 𝑚𝑝 1  

• 𝑞 2 =  
 𝑚 − 1 𝑝 2 ,  if 𝑚 − 1 𝑝 2 > 𝑞 1

  𝑞 1 ,                  otherwise
 

• … 

• 𝑞 𝑚 =  
 𝑝 𝑚 ,                if 𝑝 𝑚 > 𝑞 𝑚−1

  𝑞 𝑚−1 ,            otherwise
  

 Formula for adjusted p-values: 

 𝑞 1  = min 1,𝑚𝑝 1  

 𝑞 𝑖  = min 1,max 𝑚 − 𝑖 + 1 𝑝 𝑖 , 𝑞 𝑖−1 , 𝑖 = 2,… ,𝑚 

Holm Procedure 
Adjusted p-Values 
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 The Simes method tests the global null hypothesis  

𝐻 = 𝐻1 ∩ 𝐻2 ∩⋯∩ 𝐻𝑚: 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑚 = 0 

 It uses all ordered p-values 𝑝 1 , … , 𝑝 𝑚 , not just 𝑝 1  

Reject 𝐻 if 𝑝 𝑖 ≤ 𝑖𝛼 𝑚 for at least one 𝑖 

 Simes’ adjusted p-value uses min𝑖 𝑚𝑝 𝑖 𝑖 , which is less 

than or equal to Bonferroni’s 𝑚𝑝 1  

 Simes cannot be used to test the individual hypotheses 𝐻𝑖 

 Type I error rate is at most 𝛼 under independence or 
(certain types of) positive dependence of p-values 

Simes Method 
Overview 
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 Bonferroni rejects 𝐻, if 𝑝 1 ≤ 𝛼 2  

 Simes rejects 𝐻, if 𝑝 1 ≤ 𝛼 2  or 𝑝 2 ≤ 𝛼 

 Under independence of 𝑝1 and 𝑝2, 

• Pr Bonferroni rejects  = 1 − 1 − 𝛼 2 2 = 𝛼 − 𝛼 2 2 < 𝛼 

• Pr Simes rejects  = 1 − 1 − 𝛼 2 2 + 𝛼 2 2 = 𝛼 

Simes Method 
Comparison with Bonferroni method (for 𝑚 = 2) 
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𝑝2 

𝑝1 

𝛼 

0 1 

1 

𝛼 𝛼 2  

𝛼 2  

• Simes is more powerful than a 

global test based on Bonferroni 

 

• Simes assumes non-negative 

correlations between p-values, 

Bonferroni does not 



Hochberg Procedure 
Overview 

 The Hochberg procedure is a stepwise version of the 
Simes method, using the same thresholds as Holm: 

• If 𝑝 𝑚 ≤ 𝛼, reject 𝐻 1 , … , 𝐻 𝑚  and stop; else continue 

• If 𝑝 𝑚−1 ≤ 𝛼 2 , reject 𝐻 1 , … , 𝐻 𝑚−1  and stop; else continue 

• … 

• If 𝑝 𝑖 ≤ 𝛼 𝑚 − 𝑖 + 1 , reject 𝐻 1 , … , 𝐻 𝑖  and stop; else continue 

• … 

• If 𝑝 1 ≤ 𝛼 𝑚 , reject 𝐻 1  
 

 Adjusted p-values are 

 𝑞 𝑚  = 𝑝 𝑚  

 𝑞 𝑖  = min 𝑚 − 𝑖 + 1 𝑝 𝑖 , 𝑞 𝑖+1 , for 𝑖 = 𝑚 − 1,… , 1 
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 The Hochberg procedure is sometimes called “stepup 
Simes” procedure 

 It is more powerful than the Holm procedure 

• Both procedures use the same thresholds, but Hochberg starts with 
the largest p-value, whereas Holm starts with the smallest 

 It makes the same assumptions as the Simes test (i.e. 
independence or positive dependence of p-values) 

 The Hochberg procedure can be improved  

• For example, Hommel procedure based on the closed test 
procedure (see later) 

Hochberg Procedure 
Properties 
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 When comparing several treatments with a control, the 
Dunnett test can be used 

 The methods from Bonferroni, Holm, Simes, and Hochberg 
can also be used in these situations, but only the Dunnett 
test exploits the correlation between the p-values 

Dunnett Test 
Comparing several treatments with a control 
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 Consider the unbalanced one-way layout 

𝑌𝑖𝑗 = 𝜇𝑖 + 𝜀𝑖𝑗 

 where 

• 𝑌𝑖𝑗  denotes observation 𝑗 = 1,… , 𝑛𝑖 in group 𝑖 = 0,1, … ,𝑚 

• 𝜇𝑖 the effect of treatment group 𝑖 

• 𝜀𝑖𝑗 are independent and identically normally distributed with mean 0 

and variance 𝜎2, i.e. 𝜀𝑖𝑗 ∼ N(0, 𝜎2) 

 The ANOVA 𝐹-test tests the global null 𝐻: 𝜇0 = ⋯ = 𝜇𝑚 

 Here, we are interested in comparing 𝑚 treatments with the 
control treatment 𝑖 = 0, i.e. testing the 𝑚 null hypotheses 

𝐻𝑖: 𝜃𝑖 = 𝜇𝑖 − 𝜇0 ≤ 0, 𝑖 = 1,… ,𝑚 

Dunnett Test 
Linear model and hypotheses 
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 Consider the 𝑚 pairwise 𝑡-tests 

𝑡𝑖 =
𝜇 𝑖 − 𝜇 0

𝜎 1
𝑛𝑖

+
1
𝑛0

, 𝑖 = 1,… ,𝑚 

where 𝜇 𝑖 and 𝜎  are the ordinary least squares of 𝜇𝑖 and 𝜎, 
respectively 

 Note that 𝑡𝑖 ∼ 𝑡𝜈 under 𝐻𝑖, where 𝑡𝜈 denotes the univariate 𝑡-
distribution with 𝜈 =  𝑛𝑖𝑖 −𝑚 − 1 degrees of freedom 

 Furthermore, 𝑡1, … , 𝑡𝑚  follows the 𝑚-variate 𝑡-distribution with 
𝜈 degrees of freedom and correlations 

𝜌𝑖𝑗 =
𝑛𝑖

𝑛𝑖+𝑛0
,

𝑛𝑗

𝑛𝑗+𝑛0
, 𝑖, 𝑗 = 1,… ,𝑚 

Dunnett test 
Individual test statistics 
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 For the 𝑚 individual null hypotheses, 

Reject 𝐻𝑖 if 𝑡𝑖 ≥ 𝑐𝑚,1−𝛼 

 The quantile 𝑐𝑚,1−𝛼 is computed such that 

𝑃 𝑡1, … , 𝑡𝑚 ≤ 𝑐𝑚,1−𝛼 , … , 𝑐𝑚,1−𝛼 = 𝑃 max𝑖 𝑡𝑖 ≤ 𝑐𝑚,1−𝛼 = 1 − 𝛼 

 where 𝑡1, … , 𝑡𝑚  follows the 𝑚-variate 𝑡-distribution with 𝜈 
degrees of freedom and correlations 𝜌𝑖𝑗, for 𝑖, 𝑗 = 1,… ,𝑚 

 In other words, 𝑐𝑚,1−𝛼 is the 1 − 𝛼 quantile of the 

distribution of the maximum of 𝑚 𝑡-distributed random 
variables 

Dunnett test 
Rejection rule 
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 Single step test, which is better than Bonferroni as it 
exploits the known correlations between test statistics 

 Adjusted p-values can be calculated numerically based on 
the multivariate 𝑡-distribution  

 The Dunnett test shown here can be extended to any linear 
and generalized linear model (not in this tutorial) 

 It can be improved by extending it  to a stepwise procedure, 
similar to the Holm procedure (see later) 

 Other well-known parametric tests follow the same principle 

• For example, the Tukey test compares all treatment groups against 
each other, also using a multivariate 𝑡-distribution 

Dunnett test 
Properties 
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 Let 𝑡 1 ≥ ⋯ ≥ 𝑡 𝑚  denote the ordered test statistics with 

associated null hypotheses 𝐻 1 , … , 𝐻 𝑚  

 Then we have the following stepwise procedure: 

• If 𝑡 1 ≥ 𝑐𝑚,1−𝛼, reject 𝐻 1  and continue; else stop 

• If 𝑡 2 ≥ 𝑐𝑚−1,1−𝛼, reject 𝐻 2  and continue; else stop 

• … 

• If 𝑡 𝑖 ≥ 𝑐𝑚−𝑖+1,1−𝛼, reject 𝐻 𝑖  and continue; else stop 

• … 

• If 𝑡 𝑚 ≥ 𝑐1,1−𝛼, reject 𝐻 𝑚  

where 𝑐𝑚−𝑖+1,1−𝛼 denotes the 1 − 𝛼 quantile of the distribution of the 

maximum of 𝑚 − 𝑖 + 1 𝑡-distributed random variables and is computed 
from the corresponding multivariate 𝑡-distribution 

Stepwise Dunnett test 
Overview 
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 For the stepwise Dunnett test, the quantiles change as hypotheses 
are rejected 

• For example, if 𝐻 1  is rejected, then the quantile 𝑐𝑚−1,1−𝛼 is computed from a 

𝑚 − 1 -variate 𝑡-distribution 

 The stepwise Dunnett test is better than the single step Dunnett test 

• It can be shown that 𝑐𝑚,1−𝛼 ≥ 𝑐𝑚−1,1−𝛼 ≥ ⋯ ≥ 𝑐1,1−𝛼, where 𝑐1,1−𝛼 = 𝑡𝜈,1−𝛼 is the 

quantile from the univariate 𝑡-distribution with 𝜈 degrees of freedom 

• The Dunnett test uses 𝑐𝑚,1−𝛼 for all comparisons 

 The stepwise Dunnett test is better than the Holm procedure as it 
exploits the known correlations between test statistics 

• The stepwise version shown here is sometimes called “stepdown Dunnett” test  

• A “stepup Dunnett” test also exists, similar to Hochberg (not in this tutorial) 

Stepwise Dunnett test 
Properties 
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Correlations 

Without With 

Single Step Bonferroni Simes Dunnett 

Stepwise Holm Hochberg Stepdown Dunnett 

Summary 
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Remarks 

• Single step methods are less powerful than stepwise methods and 
not often used in practice 

• Accounting for correlations leads to more powerful procedures, but 
correlations are not always known 

• Simes-based methods are more powerful than Bonferroni-based 
methods, but control the FWER only under certain dependence 
structures 

• In practice, we select the procedure that is not only powerful from a 
statistical perspective, but also appropriate from clinical perspective 
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 Double-blind, parallel-group study to show that drug B is 

better than drug A in patients with chronic obstructive 

pulmonary disease (COPD) 

 Primary endpoint: FEV1 (forced expiratory volume in one 

second) 

• Continuous variable, where larger values indicate better efficacy 

 

 Secondary endpoint: Time to exacerbation 

• Time until the event is of interest has been observed 

COPD Example 
Background 
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 There are two hypotheses corresponding to the two 

endpoints, thus a multiple test procedure is needed 

 All of the previous multiple tests could be applied, but do 

not reflect the relative importance of the two endpoints 

• For example, the Bonferroni test would treat FEV1 and time-to-

exacerbation as equally important 

 Note that the previous stepwise procedures (Holm, 

Hochberg, ...) use a data-driven order of hypotheses 

• Here we need a multiple test procedure that specifies the order of the 

hypotheses based on clinical importance (and not based on data)  

COPD Example 
Background (continued) 
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 If the hierarchy of hypotheses is specified before data is 
observed, one can apply a hierarchical test procedure 

 Two hierarchical test procedures will be introduced 

• Fixed sequence procedure  

• Fallback procedure 

Hierarchical Test Procedures 
Overview 
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Hierarchical Test Procedures 
Fixed sequence procedure – General description 
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 Fixed sequence procedures test hierarchically ordered 
hypotheses in sequence at level 𝛼 until first non-rejection 

 Assume 𝑚 hierarchically ordered hypotheses 

𝐻1 → 𝐻2 → ⋯ → 𝐻𝑚  

with unadjusted p-values 𝑝1, 𝑝2, … , 𝑝𝑚  

 We have the following fixed sequence procedure: 

• If 𝑝1 ≤ 𝛼, reject 𝐻1 and continue; else stop 

• If 𝑝2 ≤ 𝛼, reject 𝐻2 and continue; else stop 

• … 

• If 𝑝𝑖 ≤ 𝛼, reject 𝐻𝑖 and continue; else stop 

• … 

• If 𝑝𝑚 ≤ 𝛼, reject 𝐻𝑚 



 Assume 𝐻1 → 𝐻2 → 𝐻3  

• That is, 𝐻1 is more important than 𝐻2, and 𝐻2 is more important than 𝐻3 

 We have the following fixed sequence procedure for example: 

Hierarchical Test Procedures 
Fixed sequence procedure – Example with 𝑚 = 3 hypotheses 

Note: Green = rejection; red = no rejection (and stop) 
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Hierarchical Test Procedures 
Fixed sequence procedure – Properties 

 Adjusted p-values are given by 

𝑞𝑖 = max 𝑝1, … , 𝑝𝑖 , 𝑖 = 1,… ,𝑚 

 Advantages 

• Simple procedure, each test is performed in sequence at level 𝛼  

• It is optimal when hypotheses early in the sequence are associated 
with large effects and performs poorly otherwise 

 Disadvantages 

• Once a hypothesis is not rejected, no further testing is permitted 

 Great care is advised when specifying the sequence of 
hypotheses 
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Hierarchical Test Procedures 
Fallback procedure – General description 

 Fallback procedures test hierarchically ordered hypotheses 
in sequence as the fixed sequence procedure, but splits the 
level 𝛼 between the hypotheses 

 Assume 𝑚 hierarchically ordered hypotheses 

𝐻1 → 𝐻2 → ⋯ → 𝐻𝑚  

with unadjusted p-values 𝑝1, … , 𝑝𝑚 and 𝛼 = 𝛼1 +⋯+ 𝛼𝑚 

 Then the fallback procedure tests 𝐻𝑖 at level 𝛼𝑖
′, where for 

𝑖 = 2,… ,𝑚 

𝛼𝑖
′ =  

 𝛼𝑖 ,                if 𝐻𝑖−1 is not rejected

  𝛼𝑖 + 𝛼𝑖−1
′ ,  otherwise

 

 and 𝛼1
′ = 𝛼1  
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 Assume 𝐻1 → 𝐻2 → 𝐻3, and split the significance level as 
𝛼1 = 𝛼2 = 𝛼3 = 𝛼/3 

 Following the fallback procedure, we could have for example: 

Hierarchical Test Procedures 
Fallback procedure – Example with 𝑚 = 3 hypotheses 

Note: Green = rejection; red = no rejection (and stop) 
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Hierarchical Test Procedures 
Fallback procedure – Properties 

 The fixed sequence procedure is obtained as special 
case from the fallback procedure by setting 𝛼1 = 𝛼 and 
𝛼𝑖 = 0 for 𝑖 > 1 

 In contrast to the fixed sequence procedure, the fallback 
procedure tests all hypotheses in the pre-specified 
sequence even if the initial hypotheses are not rejected 
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 Schematic diagram for 𝑚 = 2 null hypotheses 𝐻1, 𝐻2 

 

 

 

 Rejection rule: Reject 𝐻1 (𝐻2) while controlling the FWER 
at 𝛼, if 𝐻1 (𝐻2) and 𝐻12 are rejected, each at local level 𝛼 

 Operationally 

• Test 𝐻12 at local level 𝛼 (using a suitable test): If rejected, proceed; 
otherwise stop 

• Test 𝐻1 and 𝐻2 each at local level 𝛼: Reject 𝐻1 𝐻2  overall if 
𝐻12 and 𝐻1 𝐻2  are rejected locally 

Closed Test Procedure (CTP) 
Operational definition for 𝑚 = 2 null hypotheses  
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𝐻1 𝐻2 𝐻12 

Closed Test Procedure 
Venn-type diagram for 𝑚 = 2 null hypotheses 

 Different parts indicate different null hypotheses as shown above 

 Question: How do we test them? 

• Test 𝐻12 using Bonferroni, Simes, Dunnett, etc. at level 𝛼 

• Test 𝐻1, 𝐻2 each using a level 𝛼 test 
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CTP Using Bonferroni 
Holm procedure 

 Using Bonferroni to test 𝐻12,  
reject if 𝑝1 ≤ 𝛼/2 or 𝑝2 ≤ 𝛼/2,  
i.e., if 𝑝 1 ≤ 𝛼 2  

 If we fail to reject 𝐻12, stop as  
neither 𝐻1 or 𝐻2 can be rejected  
according to the CTP 

 If we reject 𝐻12, then  

• 𝐻 1  is rejected automatically as 𝑝 1 ≤ 𝛼 2 < 𝛼 

• we only need to test 𝐻 2  at level 𝛼, i.e., reject 𝐻 2  if 𝑝 2 ≤ 𝛼  

 This results exactly in the Holm procedure 

𝒑(𝟏) ≤ 𝜶 𝟐  

 

 

   𝒑𝟏 ≤ 𝜶              𝒑𝟐 ≤ 𝜶  
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CTP Using Simes 
Hochberg procedure 

 Using Simes to test 𝐻12,  
reject if 𝑝(1) ≤ 𝛼/2 or 𝑝(2) ≤ 𝛼 

 If we fail to reject 𝐻12, stop 

 If we reject 𝐻12 because 
𝑝(2) ≤ 𝛼, then 𝐻 1 , 𝐻 2  are  

rejected automatically as 𝑝 1 ≤ 𝑝 2 ≤ 𝛼, and stop 

 If we reject 𝐻12 because 𝑝 1 ≤ 𝛼/2 but 𝑝(2) > 𝛼, we then 

reject 𝐻(1) but fail to reject 𝐻 2  and stop 

 This results exactly in the Hochberg procedure for 𝑚 = 2 

• For 𝑚 > 2 the Hochberg procedure is less powerful the CTP using 
Simes tests (Hommel procedure) 

𝒑(𝟏) ≤ 𝜶 𝟐  or 𝒑(𝟐) ≤ 𝜶 

 

 

   𝒑𝟏 ≤ 𝜶              𝒑𝟐 ≤ 𝜶  
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CTP Using Dunnett 
Stepwise Dunnett test 

 Using Dunnett test to test 𝐻12,  
reject if 𝑡1 ≤ c2,1−𝛼 or t2 ≤ c2,1−𝛼, 

i.e., if 𝑡 1 ≤ c2,1−𝛼 

 If we fail to reject 𝐻12, stop 

 If we reject 𝐻12, then 

• 𝐻 1  is rejected automatically as 𝑡 1 ≤ c2,1−𝛼 ≤ c1,1−𝛼 

• we only need to test 𝐻 2  at level 𝛼, i.e., reject 𝐻 2  if 𝑡 2 ≤ c1,1−𝛼 

 This results exactly in the stepdown Dunnett procedure 

𝒕 𝟏 ≤ 𝒄𝟐,𝟏−𝜶 

 

 

   𝒕𝟏 ≤ 𝒄𝟏,𝟏−𝜶        𝒕𝟐 ≤ 𝒄𝟏,𝟏−𝜶 
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CTP Using Weighted Bonferroni (1) 
Fixed sequence procedure  

 Two ordered hypothese 𝐻1 → 𝐻2 

 Using weighted Bonferroni test to  
test 𝐻12, reject if 𝑝1 ≤ 𝛼 or 𝑝2 ≤ 0 

 If we fail to reject 𝐻12, stop 

 If we reject 𝐻12, then 

• 𝐻1 is rejected automatically as 𝑝1 ≤ 𝛼 

• we only need to test 𝐻2 at level 𝛼, i.e., reject 𝐻2 if 𝑝2 ≤ 𝛼 

 This results exactly in the fixed sequence procedure 

𝒑𝟏 ≤ 𝜶 or 𝒑𝟐 ≤ 𝟎 

 

 

       𝒑𝟏 ≤ 𝜶               𝒑𝟐 ≤ 𝜶 
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CTP Using Weighted Bonferroni (2) 
Fallback procedure  

 Two ordered hypothese 𝐻1 → 𝐻2 

 Using weighted Bonferroni test to  
test 𝐻12, reject if 𝑝1 ≤ 𝛼1 or 𝑝2 ≤ 𝛼2 

• Weights  𝛼1 and 𝛼2 are such that 
 𝛼1 + 𝛼2 = 𝛼 

 If we fail to reject 𝐻12, stop 

 If we reject 𝐻12, then we test 𝐻2 at level 𝛼, i.e., reject 𝐻2 
if 𝑝2 ≤ 𝛼 

• 𝐻1 is tested at 𝛼1 level instead of 𝛼 

 This results exactly in the fallback procedure 

𝒑𝟏 ≤ 𝜶𝟏 or 𝒑𝟐 ≤ 𝜶𝟐 

 

 

       𝒑𝟏 ≤ 𝜶𝟏               𝒑𝟐 ≤ 𝜶 
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Closed Test Procedure 
Venn-type diagram for 𝑚 = 3 null hypotheses 
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H1 H2 H12 

H123 

H13 H23 

H3 



 For 𝑚 > 2 many intersection hypotheses have to be tested 

 CTP considers all intersection hypotheses 

𝐻𝐽 =  𝐻𝑖
𝑖∈𝐽

,  𝐽 ⊆ 1,… ,𝑚  

• Any suitable test can be used to test 𝐻𝐽 at local level 𝛼 

 An individual 𝐻𝑖 is rejected at level 𝛼 if all hypotheses 𝐻𝐽 

formed by intersection with 𝐻𝑖 are rejected at local level 𝛼 

Closed Test Procedure 
Formal definition for 𝑚 null hypotheses  
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Summary 
 

 CTP is a general principle to construct powerful multiple 
test procedures 

 In a CTP, one rejects an individual null hypothesis 𝐻𝑖 at 
overall level 𝛼 by rejecting all intersection null hypotheses 
𝐻𝐽 ⊆ 𝐻𝑖, including 𝐽 = 𝑖  

 Many common multiple test procedures are CTP, including 

• Holm, Hochberg, step-down Dunnett, ... 

 CTPs satisfy certain optimality criteria and there is no 
reason why not to use a CTP 

 The number of intersection hypotheses is 2𝑚 − 1  

• For large 𝑚, this number increases rapidly and CTPs are in general 
difficult to apply 
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 Objective: Show that a new drug is better than a control 
drug in patients with COPD for two endpoints 

• Primary endpoint: FEV1 (forced expiratory volume in one second) 

- Continuous variable, where larger values indicate better efficacy 

• Secondary endpoint: Time to exacerbation 

- Time until the event of interest has been observed 

 New drug is available at two doses 𝐷1, 𝐷2 that are 
compared with the control 𝐶 

 

COPD Example extended 
Multiple endpoints and multiple doses 
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 Two sources of multiplicity 

• Comparing two doses with control for each of two endpoints 

 Resulting in four hypotheses of interest 

• Two primary hypotheses 𝐻1, 𝐻2 (comparing 𝐷1, 𝐷2 with 𝐶 for FEV1) 

• Two secondary hypotheses 𝐻3, 𝐻4 (comparing 𝐷1, 𝐷2 with 𝐶 for time 
to exacerbation) 

 Note that the four hypotheses 
are not equally important 

• The secondary hypotheses 𝐻3 (𝐻4)  
should be tested, only if the corresponding 
primary hypotheses 𝐻1 (𝐻2) is rejected 

 Need for suitable multiple test procedures 

COPD Example extended 
Multiple endpoints and multiple doses 
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 As before,  

• Null hypotheses 𝐻1, … , 𝐻𝑚 

• Initial allocation of the significance level 𝛼1 +⋯+ 𝛼𝑚 = 𝛼 

• Unadjusted p-values 𝑝1, … , 𝑝𝑚 

 𝛼–propagation 

 If a hypothesis 𝐻𝑖 can be rejected at level 𝛼𝑖 (i.e. 𝑝𝑖 ≤ 𝛼𝑖), 
propagate its level 𝛼𝑖 to the remaining, not yet rejected 
hypotheses (according to a prefixed rule) and continue 
testing with the updated 𝛼 levels 

Graphical Approach 
Heuristics 
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Graphical Approach 
Conventions 
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 Bonferroni: no 𝛼–propagation, i.e. no edges between nodes 

 

 

 

 Holm: includes 𝛼–propagation and is thus more powerful 

Graphical Approach 
Bonferroni test and Holm procedure: m=2 
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Graphical Approach 
Holm procedure: Example with 𝛼 = 0.025 

Test 𝐻1 at level 𝛼/2 Test 𝐻2 at level 𝛼/2 
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Graphical Approach 
Holm procedure: Example with 𝛼 = 0.025 

𝑝2 < 𝛼 2 ⟹ reject 𝐻2 
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Graphical Approach 
Holm procedure: Example with 𝛼 = 0.025 

Propagate 𝛼/2 
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Graphical Approach 
Holm procedure: Example with 𝛼 = 0.025 

Remove node for 𝐻2 
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Graphical Approach 
Holm procedure: Example with 𝛼 = 0.025 

Test 𝐻1 at level 𝛼 

𝑝1 > 𝛼 ⟹ retain 𝐻1 and stop 
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Graphical Approach 
Weighted Holm procedure 

 Use 𝛼1, 𝛼2 with 𝛼1 + 𝛼2 = 𝛼 instead of 𝛼1 = 𝛼2 = 𝛼/2  
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Graphical Approach 
Fixed sequence procedure: Example with 𝑚 = 3 hypotheses 

 Assume 𝐻1 → 𝐻2 → 𝐻3  

• That is, 𝐻1 is more important than 𝐻2, and 𝐻2 is more important than 𝐻3 

 Then we could have, for example, the following fixed 
sequence procedure: 

Note: Green = rejection; red = no rejection (and stop) 
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Graphical Approach 
Fallback procedure: Example with 𝑚 = 3 hypotheses 

 Assume 𝐻1 → 𝐻2 → 𝐻3, and split the significance level as 
𝛼1 = 𝛼2 = 𝛼3 = 𝛼/3 

 Then we could have, for example, the following fallback 
procedure: 
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Graphical Approach 
Formal definition 

 Define 

• Initial levels 𝜶 = 𝛼1, … , 𝛼𝑚  with  𝛼𝑖
𝑚
𝑖=1 = 𝛼 ∈ 0,1  

• 𝑚 ×𝑚 transition matrix 𝑮 = 𝑔𝑖𝑗   

 where 𝑔𝑖𝑗 is the fraction of the level of 𝐻𝑖 that is propagated to 𝐻𝑗 with 

 0 ≤ 𝑔𝑖𝑗 ≤ 1, 𝑔𝑖𝑖 = 0, and  𝑔𝑖𝑗
𝑚
𝑗=1 ≤ 1, ∀𝑖 = 1,… ,𝑚  

 

 𝑮,𝜶  determine a graph with an associated multiple test  
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Graphical Approach 
Update algorithm 

 Set 𝐽 = 1,… ,𝑚  

❶ Select a 𝑗 such that 𝑝𝑗 ≤ 𝛼𝑗 

 If no such 𝑗 exists, stop; otherwise reject 𝐻𝑗 

❷ Update the graph: 

 𝐽 → 𝐽 ∖ 𝑗  

 𝛼ℓ →  
 𝛼ℓ + 𝛼𝑗𝑔𝑗ℓ,  ℓ ∈ 𝐽 

  0,                    otherwise
 

 𝑔ℓ𝑚 →  
 
𝑔ℓ𝑚+𝑔ℓ𝑗𝑔𝑗𝑚

1−𝑔ℓ𝑗𝑔𝑗ℓ
,  ℓ,𝑚 ∈ 𝐽, ℓ ≠ 𝑚, 𝑔ℓ𝑗𝑔𝑗ℓ < 1 

  0,                    otherwise
 

❸ Go to Step 1 
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Graphical Approach 
Main result 

 The initial levels 𝜶, the transition matrix 𝑮, and the 
algorithm define a unique sequentially rejective test 
procedure that controls the FWER at level 𝛼 

 

 Remarks: 

• Any multiple test procedure derived and visualized by a graph 𝑮,𝜶  
is based on the closed test principle 

• The graph 𝑮,𝜶  and the algorithm define weighted Bonferroni tests 
for each intersection hypothesis in a CTP 

• The algorithm defines a shortcut for the resulting CTP, which does 
not depend on the rejection sequence 
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 Recall the study objective is to demonstrate that either dose 

𝐷1 or 𝐷2 of a new drug is better than control 𝐶 in COPD 

patients for two endpoints: 

• Primary endpoint:  FEV1 

• Secondary endpoint: Time to exacerbation 

 There is a natural order in that a primary endpoint is more 

important than a secondary endpoint  

• Thus, we would like to test the primary null hypothesis first;  

 only if that is rejected, we test the secondary hypothesis 

 Both doses are equally important 

• Thus, both doses are simultaneously tested against the control 

COPD Example Revisited 
Background 
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 We have four hypotheses corresponding to the two doses 

and the two endpoints; a multiple test procedure is needed 

 Standard multiple test procedures could be applied, but do 

not reflect the relative importance of the two endpoints 

• For example, the Bonferroni test would treat FEV1 and time-to-

exacerbation as equally important and doesn’t reflect the relative 

order desired 

 We need a multiple test procedure that reflects the relative 

importance and order of the hypotheses based on clinical 

importance 

COPD Example Revisited 
Background (continued) 
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COPD Example Revisited 
Building a multiple test procedure: Hypotheses 
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COPD Example Revisited 
Building a multiple test procedure: Initial levels 𝜶 
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COPD Example Revisited 
Building a multiple test procedure: 𝛼–propagation 
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𝜶 = 𝛼
2

𝛼
2 0 0  

 

𝑮 =

0 0
0 0

1 0
0 1

0 1
1 0

0 0
0 0

 

 



COPD Example Revisited 
Building a multiple test procedure: Alternative 𝛼–propagation 
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𝜶 = 𝛼
2

𝛼
2 0 0  

 

𝑮 =

0 1
2

1
2 0

1
2

0

0 1
2

0 1
1 0

0 0
0 0

 



COPD Example Revisited 
Building a multiple test procedure: General solution 

 

 

 

 

 

 

 

 

 
 Resulting graph depends on only three 

parameters 𝛼1, 𝛾1, and 𝛾2 that can be 

finetuned based on: 

• further clinical considerations, or 

• assumptions about effect sizes, correlations, ...  
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𝜶 = 𝛼1 𝛼2 0 0  
 

𝑮 =

0 𝛾1
𝛾2 0

1 − 𝛾1 0
0 1 − 𝛾2

0 1
1 0

0          0
0          0

 



COPD Example Revisited 
Numerical example with 𝛼 = 0.025 
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COPD Example Revisited 
Numerical example with 𝛼 = 0.025 
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COPD Example Revisited 
Numerical example with 𝛼 = 0.025 
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COPD Example Revisited 
Numerical example with 𝛼 = 0.025 
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COPD Example Revisited 
Numerical example with 𝛼 = 0.025 
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COPD Example Revisited 
Numerical example with 𝛼 = 0.025 
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COPD Example Revisited 
SAS: Main function 
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/* h: indicator whether a hypothesis is rejected (= 1) or not (= 0) (1 x n vector) 
   a: initial significance level allocation (1 x n vector) 
   w: weights for the edges (n x n matrix) 
   p: observed p-values (1 x n vector) */ 
 
START mcp(h, a, w, p); 
    n = NCOL(h); 
    mata = a; 
 
    crit = 0; 
    DO UNTIL(crit = 1); 
        test = (p < a); 
        IF (ANY(test)) THEN DO; 
            rej = MIN(LOC(test#(1:n))); 
            h[rej] = 1; 
            w1 = J(n, n, 0); 
            DO i = 1 TO n; 
                a[i] = a[i] + a[rej]*w[rej,i]; 
                IF (w[i,rej]*w[rej,i]<1) THEN DO j = 1 TO n; 
                    w1[i,j] = (w[i,j] + w[i,rej]*w[rej,j])/(1 - w[i,rej]*w[rej,i]); 
                END; 
                w1[i,i] = 0; 
            END; 
            w = w1; w[rej,] = 0; w[,rej] = 0; 
            a[rej]  = 0; 
            mata = mata // a; 
        END; 
        ELSE crit = 1; 
    END; 
 
    PRINT h; PRINT (ROUND(mata, 0.0001)); PRINT (ROUND(w,0.01)); 
FINISH; 



COPD Example Revisited 
SAS: Example call 

START mcp(h, a, w, p); 
    ... 
FINISH; 
 
/*** Numerical example ***/ 
h = {0      0      0    0    }; 
a = {0.0125 0.0125 0    0    }; 
w = {0      0.5    0.5  0    , 
     0.5    0      0    0.5  , 
     0      1      0    0    , 
     1      0      0    0    }; 
p = {0.01   0.02   0.07 0.001}; 
 
RUN mcp(h, a, w, p); 
QUIT; 

92  | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved 



 Open source package at http://cran.r-project.org/web/packages/gMCP/ 

 Provide graphical user interface (GUI) within R through JAVA 

COPD Example Revisited 
R: gMCP package 
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 Proposed graphical approach offers the possibility to 

• Tailor advanced multiple test procedures to structured families of 
hypotheses, 

• Visualize complex decision strategies in an efficient and easily 
communicable way, and 

• Ensure strong FWER control 

 Approach covers many common multiple test procedures 
as special cases 

• Holm, fixed sequence, fallback, gatekeeping, ... 

Summary 
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 Multiplicity raises challenging problems which affect 
almost every decision throughout drug development 

 Closed test procedure is a general principle to construct 
powerful multiple test procedures; many common 
procedures are CTPs 

 For structured hypotheses, one can apply the graphical 
approach, which is based on CTPs 

• Reflect the difference in importance as well as the relationship 
between the various study objectives 

• Are often applied to clinical trials with structured families of 
hypotheses and several levels of multiplicity 
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Summary 
 



 It is critical to choose the suitable method for a particular 
problem 

 There are different types of multiplicity problems that 
need other methods than those described here, such as: 

• Safety data analyses  

• Large-scale testing in genetics, proteomics etc. 

• Post-hoc analyses / data snooping 
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Summary 
 



Q & A 
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Appendix 
Regulatory Guidelines 

 ICH E9 (1998) on “Statistical principles for clinical trials” 
 

 CPMP (2002) Points to consider on “Multiplicity issues 
in clinical trials” 
 

 FDA draft guidance for industry on “Multiple endpoint 
analyses” expected for 2014 
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