

Introduction to Multiplicity in Clinical Trials

Frank Bretz, Xiaolei Xun (Novartis)

Tutorial at IMPACT Symposium III November 20, 2014 – Cary NC

Outline

Introduction

- Common Multiple Test Procedures
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
- Summary and Conclusions

Introduction

- Type I Error Rate Inflation
- Sources of Multiplicity
- Dealing with Multiplicity
- Common Multiple Test Procedures
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
- Summary and Conclusion

Type I Error Rate Inflation Simple example with two hypotheses

- Assume that we test a single null hypothesis at significance level $\alpha = 0.05$,
 - What is the maximum Type I error rate?
- If we have two null hypotheses and do two independent tests, each at level $\alpha = 0.05$,
 - What is the probability of rejecting at least one true null hypothesis? Pr(reject at least one true null) = 1 - Pr(reject neither true null) $= 1 - 0.95^{2}$

= 0.0975 (> 0.05)

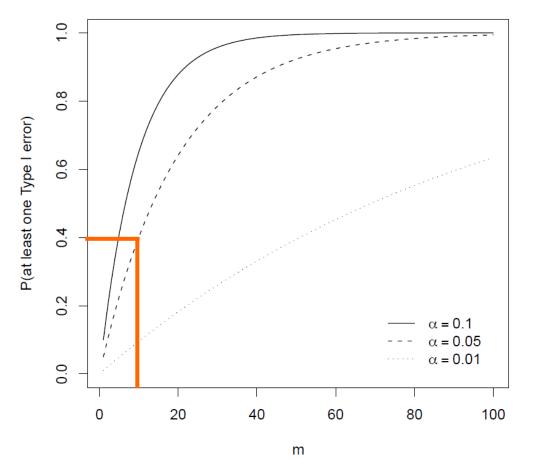
- The Type I error rate is almost doubled
- One possible solution: Test each hypothesis at level $\alpha/2 = 0.025$ (Bonferroni test, see later). Then,

Pr(reject at least one true null) = 0.0494 (< 0.05)

U NOVARTIS

Type I Error Rate Inflation More than two hypotheses

Probability of at least one Type I error for different number of hypotheses m and significance levels α



 Probability for Type I error increases with larger values of *m* and *α*

• Example:

For m = 10 and $\alpha = 0.05$, the probability of at least one Type I error is 40.1%

• For large *m* we almost surely reject incorrectly at least one null hypothesis

U NOVARTIS

- Multiple test problems are very common in clinical trials
- Example applications include the comparison of a new treatment with
 - Several other treatments
 - A control for more than one endpoint
 - A control for more than one population
 - A control repeatedly in time
 - ... (or any combination thereof)
- Multiple test problems in clinical trials are very diverse and many different methods are available

Dealing with Multiplicity

Reducing the degree of multiplicity by

- Addressing a limited number of questions only
- Minimizing number of variables, using composite endpoints, summary statistics, ...
- Prioritizing questions
- If multiplicity still persists
 - Multiplicity adjustment should always be considered
 - Regulatory guidance (see Appendix) requires a description of the multiplicity adjustment in Phase III study protocols

IN NOVARTIS

If not thought necessary, explain why

Introduction

Common Multiple Test Procedures

- Basic concepts
- Procedures by
 - Bonferroni, Holm
 - Simes, Hochberg
 - Dunnett, stepwise Dunnett
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
- Summary and Conclusions

Introduction

Common Multiple Test Procedures

- Basic concepts
- Procedures by
 - Bonferroni, Holm
 - Simes, Hochberg
 - Dunnett, stepwise Dunnett
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
- Summary and Conclusions

Basic Concepts *Notation*

- Assume a "family" of *m* inferences
- Parameters of interest are $\theta_1, \dots, \theta_m$
- Individual null hypotheses

$$H_1: \theta_1 = 0, \dots, H_m: \theta_m = 0$$

- Example:
 - Comparison of m treatments with a control therapy
 - Then, $\theta_i = \mu_i \mu_0$ are the *m* treatment effect differences of interest, where

- μ_i denotes the effect for treatment i = 1, ..., m
- μ_0 denotes the effect for the control therapy

- Need to extend the usual Type I error rate concept when testing a family of null hypotheses $H_1, ..., H_m$
- A multiple test procedure is said to control the FWER at level α (in the strong sense) if

Pr(reject at least one true null) $\leq \alpha$

under any configuration of true/false null hypotheses

- Adjusted p-values extend ordinary (i.e. unadjusted) pvalues by adjusting them for a given multiple test procedure
 - Adjusted p-values can be compared directly with the significance level α , while controlling the FWER
- Formally, the adjusted p-value is the smallest significance level at which a given hypothesis is significant as part of the multiple test procedure
- Example: Bonferroni method

 $p_i \le \alpha/m \iff q_i = \min(mp_i, 1) \le \alpha$

NOVARTIS

where p_i is the ordinary and q_i the adjusted p-value for i = 1, ..., m

Single step methods

The rejection or non-rejection of a single hypothesis does not depend on the decision on any other hypothesis.

Examples: Bonferroni, Simes, Dunnett, ...

Stepwise methods

The rejection or non-rejection of a particular hypothesis may depend on the decision on other hypotheses.

NOVARTIS

Examples: Holm, Hochberg, stepdown Dunnett, ...

13 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

Introduction

Common Multiple Test Procedures

- Basic concepts
- Procedures by
 - Bonferroni, Holm
 - Simes, Hochberg
 - Dunnett, stepwise Dunnett
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
- Summary and Conclusions

• Use α/m for all inferences; for i = 1, ..., m:

Reject H_i if $p_i \leq \alpha/m$

- Example: With m = 3, p-values must be less than 0.05/3 = 0.0167 in order to be "significant"
- With adjusted p-values $q_i = \min(mp_i, 1)$,

Reject H_i if $q_i \leq \alpha$

• Note that $mp_i > 1$ is possible and we thus need to truncate the adjusted p-avlues at 1, resulting in the minimum expression

Both rejection rules above lead to the same test decisions

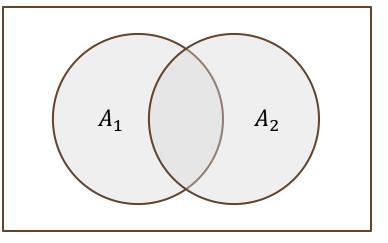
Bonferroni Method Rationale

The Bonferroni method follows from the Boole's inequality

 $\Pr(\bigcup_i A_i) \le \sum_i \Pr(A_i)$

where $A_i = \{p_i \le \alpha/m\}$ denotes the event of rejecting H_i

$$\Pr(A_1 \cup A_2) \le \Pr(A_1) + \Pr(A_2)$$



NOVARTIS

• For
$$m = 2$$
,

FWER = $\Pr(p_1 \le \alpha/2 \text{ or } p_2 \le \alpha/2 | H_1, H_2 \text{ are true})$ $\le \Pr(p_1 \le \alpha/2 | H_1 \text{ is true}) + \Pr(p_2 \le \alpha/2 | H_2 \text{ is true})$ $= 2\alpha/2 = \alpha$

- The Bonferroni method is a single step procedure
- It is rather conservative if:
 - The number of hypotheses is large
 - The test statistics are strongly positively correlated
- The Bonferroni method can be improved:
 - Stepwise methods (e.g. Holm procedure; see later)
 - Accounting for correlations (e.g. Dunnett test; see later)
- While Bonferroni is rarely used in practice, it is the basis for commonly used advanced multiple test procedures

- Assume p-values 0.0121, 0.0142, 0.0191, 0.1986
- Applying Bonferroni, we use 0.05/4 = 0.0125 and reject H_1
- However, having rejected H_1 using 0.05/4, you no longer believe that all four null hypotheses can be true
- You now think only H_2 , H_3 , H_4 can be true
- So, test H_2 using 0.05/3 = 0.0167, rather than 0.05/4

Holm Procedure Overview

•

•

Let $p_{(1)} \leq \cdots \leq p_{(m)}$ denote the ordered unadjusted p-values with associated null hypotheses $H_{(1)}, \dots, H_{(m)}$

- Then we have the following stepwise procedure:
 - If $p_{(1)} \le \alpha/m$, reject $H_{(1)}$ and continue; else stop
 - If $p_{(2)} \le \alpha/(m-1)$, reject $H_{(2)}$ and continue; else stop
 - If $p_{(i)} \le \alpha/(m-i+1)$, reject $H_{(i)}$ and continue; else stop
 - If $p_{(m)} \leq \alpha$, reject $H_{(m)}$

Holm Procedure Properties

- The Holm procedure is a stepwise procedure that is more powerful than the Bonferroni method
 - Bonferroni uses the same threshold α/m for all hypotheses
 - Holm uses the larger thresholds $\alpha/(m-i+1)$
- Sometimes called "stepdown Bonferroni" procedure
- The Holm procedure can be improved by accounting for correlations (e.g. stepdown Dunnett test; see later)

Holm Procedure Adjusted p-Values

• With $p_{(1)} \leq \cdots \leq p_{(m)}$, define adjusted p-values using • $\tilde{q}_{(1)} = mp_{(1)}$ • $\tilde{q}_{(2)} = \begin{cases} (m-1)p_{(2)}, & \text{if } (m-1)p_{(2)} > q_{(1)} \\ q_{(1)}, & \text{otherwise} \end{cases}$... • $\tilde{q}_{(m)} = \begin{cases} p_{(m)}, & \text{if } p_{(m)} > q_{(m-1)} \\ q_{(m-1)}, & \text{otherwise} \end{cases}$ Formula for adjusted p-values: $q_{(1)} = \min\{1, mp_{(1)}\}$ $q_{(i)} = \min\{1, \max[(m-i+1)p_{(i)}, q_{(i-1)}]\}, i = 2, ..., m$

U NOVARTIS

Introduction

Common Multiple Test Procedures

- Basic concepts
- Procedures by
 - Bonferroni, Holm
 - Simes, Hochberg
 - Dunnett, stepwise Dunnett
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
- Summary and Conclusions

Simes Method Overview

- The Simes method tests the global null hypothesis $H = H_1 \cap H_2 \cap \cdots \cap H_m$: $\theta_1 = \theta_2 = \cdots = \theta_m = 0$
- It uses all ordered p-values $p_{(1)}, \dots, p_{(m)}$, not just $p_{(1)}$

Reject *H* if $p_{(i)} \leq i\alpha/m$ for at least one *i*

- Simes' adjusted p-value uses $\min_i mp_{(i)}/i$, which is less than or equal to Bonferroni's $mp_{(1)}$
- Simes cannot be used to test the individual hypotheses H_i

NOVARTIS

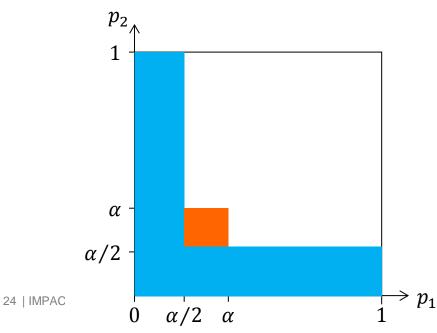
 Type I error rate is at most *α* under independence or (certain types of) positive dependence of p-values

23 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

Simes Method

Comparison with Bonferroni method (for m = 2)

- Bonferroni rejects *H*, if $p_{(1)} \le \alpha/2$
- Simes rejects *H*, if $p_{(1)} \le \alpha/2$ or $p_{(2)} \le \alpha$
- Under independence of p₁ and p₂,
 - Pr(Bonferroni rejects) = $1 (1 \alpha/2)^2 = \alpha (\alpha/2)^2 < \alpha$
 - Pr(Simes rejects) = $1 (1 \alpha/2)^2 + (\alpha/2)^2 = \alpha$



- Simes is more powerful than a global test based on Bonferroni
- Simes assumes non-negative correlations between p-values, Bonferroni does not

Hochberg Procedure Overview

- The Hochberg procedure is a stepwise version of the Simes method, using the same thresholds as Holm:
 - If $p_{(m)} \le \alpha$, reject $H_{(1)}, \dots, H_{(m)}$ and stop; else continue
 - If $p_{(m-1)} \le \alpha/2$, reject $H_{(1)}, \dots, H_{(m-1)}$ and stop; else continue
 - If $p_{(i)} \leq \alpha/(m-i+1)$, reject $H_{(1)}, \dots, H_{(i)}$ and stop; else continue • ...
 - If $p_{(1)} \le \alpha/m$, reject $H_{(1)}$
- Adjusted p-values are

• ...

 $q_{(m)} = p_{(m)}$ $q_{(i)} = \min[(m - i + 1)p_{(i)}, q_{(i+1)}], \text{ for } i = m - 1, ..., 1$

25 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

() NOVARTIS

Hochberg Procedure Properties

- The Hochberg procedure is sometimes called "stepup Simes" procedure
- It is more powerful than the Holm procedure
 - Both procedures use the same thresholds, but Hochberg starts with the largest p-value, whereas Holm starts with the smallest

IN NOVARTIS

- It makes the same assumptions as the Simes test (i.e. independence or positive dependence of p-values)
- The Hochberg procedure can be improved
 - For example, Hommel procedure based on the closed test procedure (see later)

Introduction

Common Multiple Test Procedures

- Basic concepts
- Procedures by
 - Bonferroni, Holm
 - Simes, Hochberg
 - Dunnett, stepwise Dunnett
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
- Summary and Conclusions

Dunnett Test Comparing several treatments with a control

- When comparing several treatments with a control, the Dunnett test can be used
- The methods from Bonferroni, Holm, Simes, and Hochberg can also be used in these situations, but only the Dunnett test exploits the correlation between the p-values

Dunnett Test Linear model and hypotheses

Consider the unbalanced one-way layout

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

where

- Y_{ij} denotes observation $j = 1, ..., n_i$ in group i = 0, 1, ..., m
- μ_i the effect of treatment group *i*
- ε_{ij} are independent and identically normally distributed with mean 0 and variance σ^2 , i.e. $\varepsilon_{ij} \sim N(0, \sigma^2)$
- The ANOVA *F*-test tests the global null $H: \mu_0 = \cdots = \mu_m$
- Here, we are interested in comparing m treatments with the control treatment i = 0, i.e. testing the m null hypotheses

$$H_i: \theta_i = \mu_i - \mu_0 \le 0, \qquad i = 1, \dots, m$$

U NOVARTIS

Dunnett test Individual test statistics

Consider the *m* pairwise *t*-tests

$$t_{i} = \frac{\hat{\mu}_{i} - \hat{\mu}_{0}}{\hat{\sigma}_{\sqrt{\frac{1}{n_{i}} + \frac{1}{n_{0}}}}}, \qquad i = 1, \dots, m$$

where $\hat{\mu}_i$ and $\hat{\sigma}$ are the ordinary least squares of μ_i and σ , respectively

- Note that $t_i \sim t_v$ under H_i , where t_v denotes the univariate *t*-distribution with $v = \sum_i n_i m 1$ degrees of freedom
- Furthermore, $(t_1, ..., t_m)$ follows the *m*-variate *t*-distribution with ν degrees of freedom and correlations

$$\rho_{ij} = \sqrt{\frac{n_i}{n_i + n_0}}, \sqrt{\frac{n_j}{n_j + n_0}}, \quad i, j = 1, ..., m$$

For the *m* individual null hypotheses,

Reject H_i if $t_i \ge c_{m,1-\alpha}$

• The quantile $c_{m,1-\alpha}$ is computed such that

 $P\left[(t_1, \dots, t_m) \le \left(c_{m, 1-\alpha}, \dots, c_{m, 1-\alpha}\right)\right] = P\left(\max_i t_i \le c_{m, 1-\alpha}\right) = 1 - \alpha$

where $(t_1, ..., t_m)$ follows the *m*-variate *t*-distribution with ν degrees of freedom and correlations ρ_{ij} , for i, j = 1, ..., m

NOVARTIS

In other words, $c_{m,1-\alpha}$ is the $1-\alpha$ quantile of the distribution of the maximum of m t-distributed random variables

- Single step test, which is better than Bonferroni as it exploits the known correlations between test statistics
- Adjusted p-values can be calculated numerically based on the multivariate t-distribution
- The Dunnett test shown here can be extended to any linear and generalized linear model (not in this tutorial)
- It can be improved by extending it to a stepwise procedure, similar to the Holm procedure (see later)
- Other well-known parametric tests follow the same principle
 - For example, the Tukey test compares all treatment groups against each other, also using a multivariate *t*-distribution

NOVARTIS

32 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

Stepwise Dunnett test Overview

- Let $t_{(1)} \ge \cdots \ge t_{(m)}$ denote the ordered test statistics with associated null hypotheses $H_{(1)}, \dots, H_{(m)}$
- Then we have the following stepwise procedure:
 - If $t_{(1)} \ge c_{m,1-\alpha}$, reject $H_{(1)}$ and continue; else stop
 - If $t_{(2)} \ge c_{m-1,1-\alpha}$, reject $H_{(2)}$ and continue; else stop
 - ... • If $t_{(i)} \ge c_{m-i+1,1-\alpha}$, reject $H_{(i)}$ and continue; else stop
 - If $t_{(m)} \ge c_{1,1-\alpha}$, reject $H_{(m)}$

• ...

where $c_{m-i+1,1-\alpha}$ denotes the $1 - \alpha$ quantile of the distribution of the maximum of m - i + 1 *t*-distributed random variables and is computed from the corresponding multivariate *t*-distribution

NOVARTIS

33 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

Stepwise Dunnett test Properties

- For the stepwise Dunnett test, the quantiles change as hypotheses are rejected
 - For example, if $H_{(1)}$ is rejected, then the quantile $c_{m-1,1-\alpha}$ is computed from a (m-1)-variate *t*-distribution
- The stepwise Dunnett test is better than the single step Dunnett test
 - It can be shown that $c_{m,1-\alpha} \ge c_{m-1,1-\alpha} \ge \cdots \ge c_{1,1-\alpha}$, where $c_{1,1-\alpha} = t_{\nu,1-\alpha}$ is the quantile from the univariate *t*-distribution with ν degrees of freedom
 - The Dunnett test uses $c_{m,1-\alpha}$ for all comparisons
- The stepwise Dunnett test is better than the Holm procedure as it exploits the known correlations between test statistics
 - The stepwise version shown here is sometimes called "stepdown Dunnett" test
 - A "stepup Dunnett" test also exists, similar to Hochberg (not in this tutorial)

U NOVARTIS

	Correlations		
	Without		With
Single Step	Bonferroni	Simes	Dunnett
Stepwise	Holm	Hochberg	Stepdown Dunnett

Remarks

- Single step methods are less powerful than stepwise methods and not often used in practice
- Accounting for correlations leads to more powerful procedures, but correlations are not always known
- Simes-based methods are more powerful than Bonferroni-based methods, but control the FWER only under certain dependence structures
- In practice, we select the procedure that is not only powerful from a statistical perspective, but also appropriate from clinical perspective

Introduction

Common Multiple Test Procedures

Hierarchical Test Procedure

- Fixed Sequence Procedure
- Fallback Procedure
- Numerical Example
- Closed Test Procedure
- Graphical Approach
- Summary and Conclusions

COPD Example Background

- Double-blind, parallel-group study to show that drug B is better than drug A in patients with chronic obstructive pulmonary disease (COPD)
- Primary endpoint: FEV1 (forced expiratory volume in one second)
 - Continuous variable, where larger values indicate better efficacy

- Secondary endpoint: Time to exacerbation
 - Time until the event is of interest has been observed

- There are two hypotheses corresponding to the two endpoints, thus a multiple test procedure is needed
- All of the previous multiple tests could be applied, but do not reflect the relative importance of the two endpoints
 - For example, the Bonferroni test would treat FEV1 and time-toexacerbation as equally important
- Note that the previous stepwise procedures (Holm, Hochberg, ...) use a data-driven order of hypotheses
 - Here we need a multiple test procedure that specifies the order of the hypotheses based on clinical importance (and not based on data)

Hierarchical Test Procedures Overview

If the hierarchy of hypotheses is specified before data is observed, one can apply a hierarchical test procedure

- Two hierarchical test procedures will be introduced
 - Fixed sequence procedure
 - Fallback procedure

Hierarchical Test Procedures Fixed sequence procedure – General description

- Fixed sequence procedures test hierarchically ordered hypotheses in sequence at level *α* until first non-rejection
- Assume *m* hierarchically ordered hypotheses $H_1 \rightarrow H_2 \rightarrow \cdots \rightarrow H_m$

with unadjusted p-values p_1, p_2, \dots, p_m

- We have the following fixed sequence procedure:
 - If $p_1 \leq \alpha$, reject H_1 and continue; else stop
 - If $p_2 \leq \alpha$, reject H_2 and continue; else stop
 - If $p_i \leq \alpha$, reject H_i and continue; else stop
 - ...

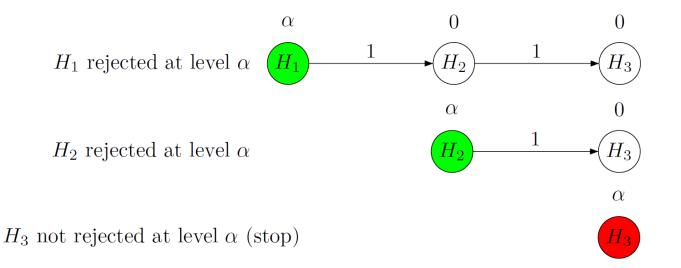
•

• If $p_m \le \alpha$, reject H_m

Hierarchical Test Procedures Fixed sequence procedure – Example with m = 3 hypotheses

• Assume $H_1 \rightarrow H_2 \rightarrow H_3$

- That is, H_1 is more important than H_2 , and H_2 is more important than H_3
- We have the following fixed sequence procedure for example:



Note: Green = rejection; red = no rejection (and stop)

41 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

U NOVARTIS

Hierarchical Test Procedures Fixed sequence procedure – Properties

- Adjusted p-values are given by $q_i = \max\{p_1, \dots, p_i\}, \quad i = 1, \dots, m$
- Advantages
 - Simple procedure, each test is performed in sequence at level α
 - It is optimal when hypotheses early in the sequence are associated with large effects and performs poorly otherwise

Disadvantages

- Once a hypothesis is not rejected, no further testing is permitted
- Great care is advised when specifying the sequence of hypotheses

Hierarchical Test Procedures Fallback procedure – General description

- Fallback procedures test hierarchically ordered hypotheses in sequence as the fixed sequence procedure, but splits the level α between the hypotheses
- Assume *m* hierarchically ordered hypotheses

$$H_1 \to H_2 \to \cdots \to H_m$$

with unadjusted p-values p_1, \dots, p_m and $\alpha = \alpha_1 + \dots + \alpha_m$

• Then the fallback procedure tests H_i at level α'_i , where for i = 2, ..., m

$$\alpha'_{i} = \begin{cases} \alpha_{i}, & \text{if } H_{i-1} \text{ is not rejected} \\ \alpha_{i} + \alpha'_{i-1}, & \text{otherwise} \end{cases}$$

and $\alpha'_1 = \alpha_1$

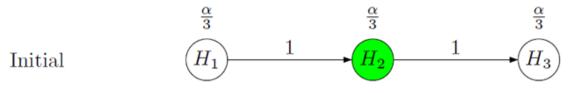
43 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

() NOVARTIS

Hierarchical Test Procedures Fallback procedure – Example with m = 3 hypotheses

Assume $H_1 \rightarrow H_2 \rightarrow H_3$, and split the significance level as $\alpha_1 = \alpha_2 = \alpha_3 = \alpha/3$

Following the fallback procedure, we could have for example:



Note: Green = rejection; red = no rejection (and stop)

44 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

U NOVARTIS

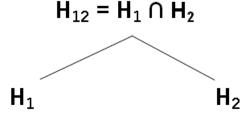
Hierarchical Test Procedures Fallback procedure – Properties

- The fixed sequence procedure is obtained as special case from the fallback procedure by setting $\alpha_1 = \alpha$ and $\alpha_i = 0$ for i > 1
- In contrast to the fixed sequence procedure, the fallback procedure tests all hypotheses in the pre-specified sequence even if the initial hypotheses are not rejected

- Introduction
- Common Multiple Test Procedures
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
- Summary and Conclusions

Closed Test Procedure (CTP) Operational definition for m = 2 null hypotheses

- Schematic diagram for m = 2 null hypotheses H_1, H_2

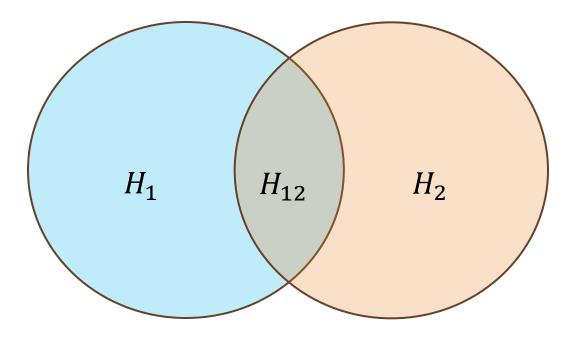


- Rejection rule: Reject H_1 (H_2) while controlling the FWER at α , if H_1 (H_2) and H_{12} are rejected, each at local level α
- Operationally
 - Test H_{12} at local level α (using a suitable test): If rejected, proceed; otherwise stop

INOVARTIS

 Test H₁ and H₂ each at local level α: Reject H₁ (H₂) overall if H₁₂ and H₁ (H₂) are rejected locally

Closed Test Procedure Venn-type diagram for m = 2 null hypotheses



Different parts indicate different null hypotheses as shown above

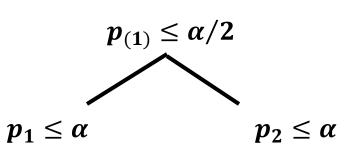
NOVARTIS

- Question: How do we test them?
 - Test H_{12} using Bonferroni, Simes, Dunnett, etc. at level α
 - Test H_1 , H_2 each using a level α test

48 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

CTP Using Bonferroni Holm procedure

- Using Bonferroni to test H_{12} , reject if $p_1 \le \alpha/2$ or $p_2 \le \alpha/2$, i.e., if $p_{(1)} \le \alpha/2$
- If we fail to reject H₁₂, stop as neither H₁ or H₂ can be rejected according to the CTP



- If we reject H₁₂, then
 - $H_{(1)}$ is rejected automatically as $p_{(1)} \leq \alpha/2 < \alpha$
 - we only need to test $H_{(2)}$ at level α , i.e., reject $H_{(2)}$ if $p_{(2)} \leq \alpha$
- This results exactly in the Holm procedure

CTP Using Simes Hochberg procedure

- Using Simes to test H_{12} , reject if $p_{(1)} \leq \alpha/2$ or $p_{(2)} \leq \alpha$
- If we fail to reject H_{12} , stop
- If we reject H_{12} because $p_1 \le \alpha$ $p_2 \le \alpha$ $p_{(2)} \le \alpha$, then $H_{(1)}, H_{(2)}$ are rejected automatically as $p_{(1)} \le p_{(2)} \le \alpha$, and stop

 $p_{(1)} \leq lpha/2$ or $p_{(2)} \leq lpha$

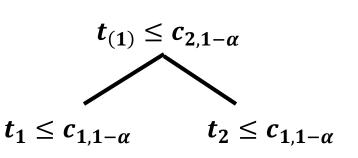
NOVARTIS

- If we reject H_{12} because $p_{(1)} \le \alpha/2$ but $p_{(2)} > \alpha$, we then reject $H_{(1)}$ but fail to reject $H_{(2)}$ and stop
- This results exactly in the Hochberg procedure for m = 2
 - For m > 2 the Hochberg procedure is less powerful the CTP using Simes tests (Hommel procedure)

50 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

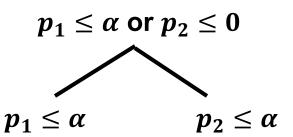
CTP Using Dunnett Stepwise Dunnett test

- Using Dunnett test to test H_{12} , reject if $t_1 \leq c_{2,1-\alpha}$ or $t_2 \leq c_{2,1-\alpha}$, i.e., if $t_{(1)} \leq c_{2,1-\alpha}$
- If we fail to reject H₁₂, stop
- If we reject H₁₂, then
 - $H_{(1)}$ is rejected automatically as $t_{(1)} \leq c_{2,1-\alpha} \leq c_{1,1-\alpha}$
 - we only need to test $H_{(2)}$ at level α , i.e., reject $H_{(2)}$ if $t_{(2)} \leq c_{1,1-\alpha}$
- This results exactly in the stepdown Dunnett procedure



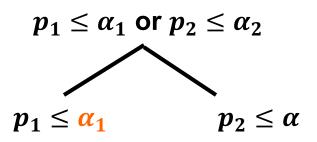
CTP Using Weighted Bonferroni (1) Fixed sequence procedure

- Two ordered hypothese $H_1 \rightarrow H_2$
- Using weighted Bonferroni test to test H_{12} , reject if $p_1 \le \alpha$ or $p_2 \le 0$
- If we fail to reject H₁₂, stop
- If we reject H_{12} , then
 - H_1 is rejected automatically as $p_1 \leq \alpha$
 - we only need to test H_2 at level α , i.e., reject H_2 if $p_2 \leq \alpha$
- This results exactly in the fixed sequence procedure



CTP Using Weighted Bonferroni (2) Fallback procedure

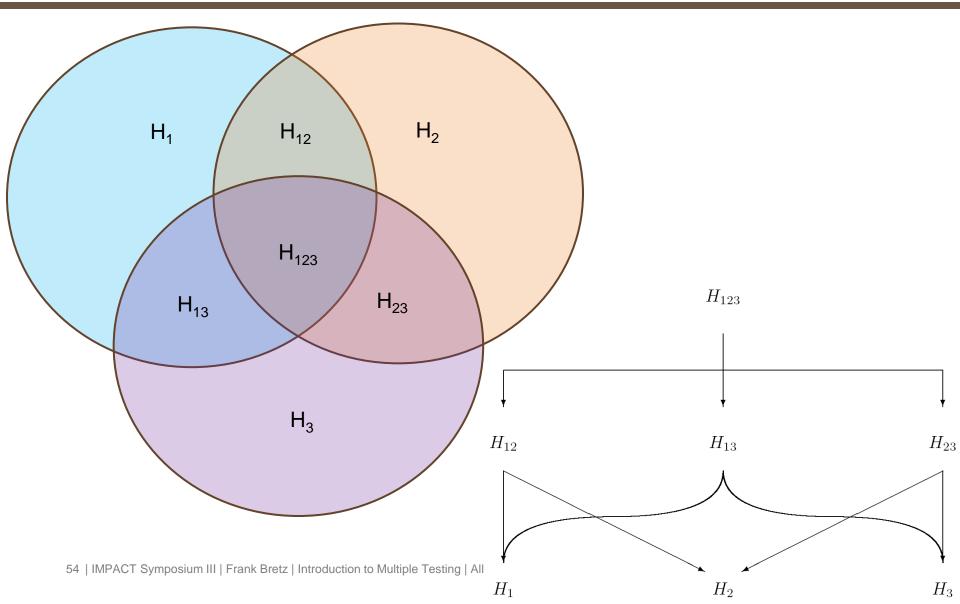
- Two ordered hypothese $H_1 \rightarrow H_2$
- Using weighted Bonferroni test to test H_{12} , reject if $p_1 \leq \alpha_1$ or $p_2 \leq \alpha_2$
 - Weights α_1 and α_2 are such that $\alpha_1 + \alpha_2 = \alpha$



- If we fail to reject H_{12} , stop
- If we reject H_{12} , then we test H_2 at level α , i.e., reject H_2 if $p_2 \leq \alpha$
 - H_1 is tested at α_1 level instead of α
- This results exactly in the fallback procedure

Closed Test Procedure

Venn-type diagram for m = 3 null hypotheses



Closed Test Procedure Formal definition for *m* null hypotheses

- For m > 2 many intersection hypotheses have to be tested
- CTP considers all intersection hypotheses

$$H_J = \bigcap_{i \in J} H_i, \qquad J \subseteq \{1, \dots, m\}$$

- Any suitable test can be used to test H_I at local level α
- An individual H_i is rejected at level α if all hypotheses H_J formed by intersection with H_i are rejected at local level α

Summary

- CTP is a general principle to construct powerful multiple test procedures
- In a CTP, one rejects an individual null hypothesis H_i at overall level α by rejecting all intersection null hypotheses $H_J \subseteq H_i$, including $J = \{i\}$
- Many common multiple test procedures are CTP, including
 Holm, Hochberg, step-down Dunnett, ...
- CTPs satisfy certain optimality criteria and there is no reason why not to use a CTP
- The number of intersection hypotheses is $2^m 1$
 - For large *m*, this number increases rapidly and CTPs are in general difficult to apply

Introduction

- Common Multiple Test Procedures
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
 - Conventions
 - Common multiple test procedures
 - Formal description
 - COPD example extended

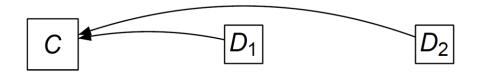
Summary and Conclusions

Introduction

- Common Multiple Test Procedures
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
 - Conventions
 - Common multiple test procedures
 - Formal description
 - COPD example extended
- Summary and Conclusions

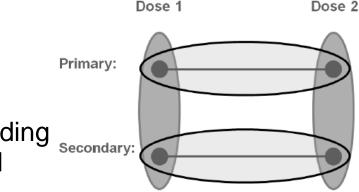
COPD Example extended Multiple endpoints and multiple doses

- Objective: Show that a new drug is better than a control drug in patients with COPD for two endpoints
 - Primary endpoint: FEV1 (forced expiratory volume in one second)
 - Continuous variable, where larger values indicate better efficacy
 - Secondary endpoint: Time to exacerbation
 - Time until the event of interest has been observed
- New drug is available at two doses D₁, D₂ that are compared with the control C



COPD Example extended Multiple endpoints and multiple doses

- Two sources of multiplicity
 - Comparing two doses with control for each of two endpoints
- Resulting in four hypotheses of interest
 - Two primary hypotheses H_1 , H_2 (comparing D_1 , D_2 with C for FEV1)
 - Two secondary hypotheses H_3 , H_4 (comparing D_1 , D_2 with C for time to exacerbation)
- Note that the four hypotheses are not equally important
 - The secondary hypotheses H_3 (H_4) should be tested, only if the corresponding primary hypotheses H_1 (H_2) is rejected



Need for suitable multiple test procedures

60 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

U NOVARTIS

Graphical Approach Heuristics

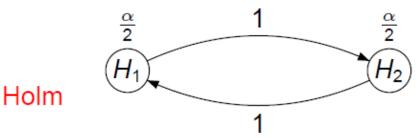
- As before,
 - Null hypotheses H_1, \dots, H_m
 - Initial allocation of the significance level $\alpha_1 + \dots + \alpha_m = \alpha$
 - Unadjusted p-values p_1, \dots, p_m

α-propagation

If a hypothesis H_i can be rejected at level α_i (i.e. $p_i \leq \alpha_i$), propagate its level α_i to the remaining, not yet rejected hypotheses (according to a prefixed rule) and continue testing with the updated α levels

Graphical Approach Conventions

- Hypotheses H_1, \ldots, H_m represented as nodes
- 2 Split of significance level α as weights $\alpha_1, \ldots, \alpha_m$
- "α propagation" through weighted, directed edges



 $\frac{\alpha}{2}$

Bonferror

 $\frac{\alpha}{2}$

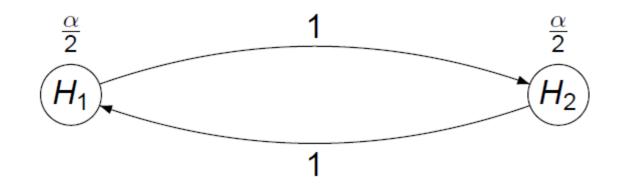
Introduction

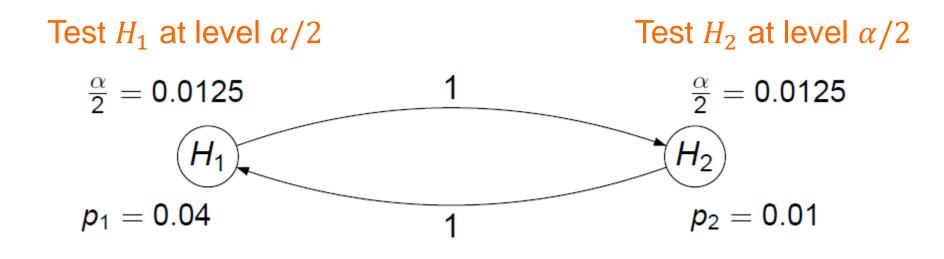
- Common Multiple Test Procedures
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
 - Conventions
 - Common multiple test procedures
 - Formal description
 - COPD example extended
- Summary and Conclusions

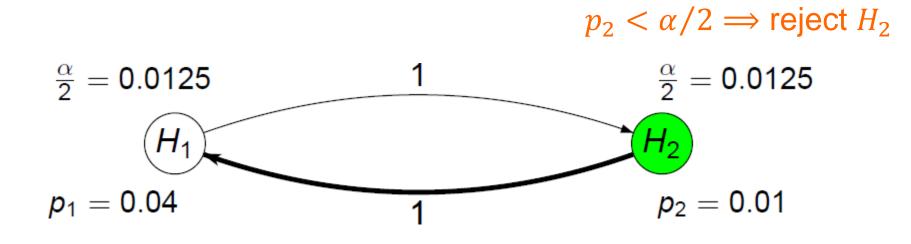
Graphical Approach Bonferroni test and Holm procedure: m=2

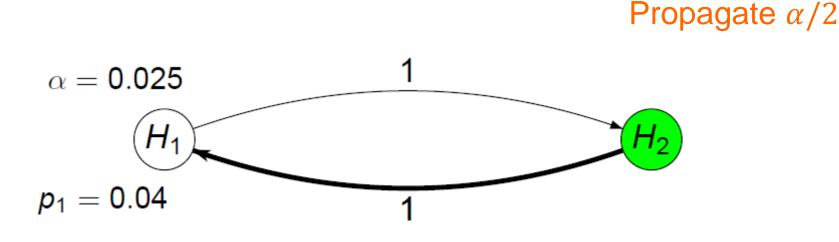
Bonferroni: no α -propagation, i.e. no edges between nodes

- Holm: includes α -propagation and is thus more powerful

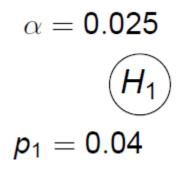








Remove node for H_2




```
Test H_1 at level \alpha

p_1 > \alpha \implies retain H_1 and stop

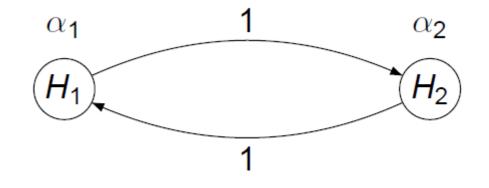
\alpha = 0.025

H_1
```

 $p_1 = 0.04$

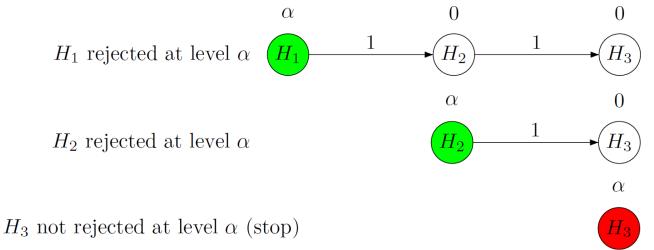
Graphical Approach Weighted Holm procedure

• Use α_1, α_2 with $\alpha_1 + \alpha_2 = \alpha$ instead of $\alpha_1 = \alpha_2 = \alpha/2$



Graphical Approach Fixed sequence procedure: Example with m = 3 hypotheses

- Assume $H_1 \rightarrow H_2 \rightarrow H_3$
 - That is, H_1 is more important than H_2 , and H_2 is more important than H_3
- Then we could have, for example, the following fixed sequence procedure:



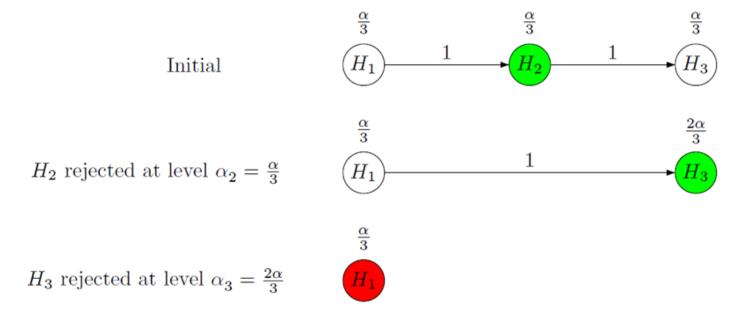
Note: Green = rejection; red = no rejection (and stop)

71 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

U NOVARTIS

Graphical Approach Fallback procedure: Example with m = 3 hypotheses

- Assume $H_1 \rightarrow H_2 \rightarrow H_3$, and split the significance level as $\alpha_1 = \alpha_2 = \alpha_3 = \alpha/3$
- Then we could have, for example, the following fallback procedure:



U NOVARTIS

Introduction

- Common Multiple Test Procedures
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
 - Conventions
 - Common multiple test procedures
 - Formal description
 - COPD example extended
- Summary and Conclusions

Graphical Approach Formal definition

Define

• Initial levels $\alpha = (\alpha_1, ..., \alpha_m)$ with $\sum_{i=1}^m \alpha_i = \alpha \in (0,1)$

• $m \times m$ transition matrix $\boldsymbol{G} = (g_{ij})$

where g_{ij} is the fraction of the level of H_i that is propagated to H_j with $0 \le g_{ij} \le 1$, $g_{ii} = 0$, and $\sum_{j=1}^m g_{ij} \le 1$, $\forall i = 1, ..., m$

NOVARTIS

• (G, α) determine a graph with an associated multiple test

Graphical Approach Update algorithm

Set $J = \{1, ..., m\}$

1 Select a *j* such that $p_j \leq \alpha_j$

If no such *j* exists, stop; otherwise reject H_j

Opdate the graph:

$$J \to J \setminus \{j\}$$

$$\alpha_{\ell} \to \begin{cases} \alpha_{\ell} + \alpha_{j}g_{j\ell}, & \ell \in J \\ 0, & \text{otherwise} \end{cases}$$

$$g_{\ell m} \to \begin{cases} \frac{g_{\ell m} + g_{\ell j}g_{jm}}{1 - g_{\ell j}g_{j\ell}}, & \ell, m \in J, \ell \neq m, g_{\ell j}g_{j\ell} < 1 \\ 0, & \text{otherwise} \end{cases}$$

NOVARTIS

Go to Step 1

Graphical Approach Main result

• The initial levels α , the transition matrix G, and the algorithm define a unique sequentially rejective test procedure that controls the FWER at level α

Remarks:

- Any multiple test procedure derived and visualized by a graph (G, α) is based on the closed test principle
- The graph (G, α) and the algorithm define weighted Bonferroni tests for each intersection hypothesis in a CTP
- The algorithm defines a shortcut for the resulting CTP, which does not depend on the rejection sequence

NOVARTIS

Introduction

- Common Multiple Test Procedures
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
 - Conventions
 - Common multiple test procedures
 - Formal description
 - COPD example extended
- Summary and Conclusions

COPD Example Revisited Background

- Recall the study objective is to demonstrate that either dose D₁ or D₂ of a new drug is better than control C in COPD patients for two endpoints:
 - Primary endpoint: FEV1
 - Secondary endpoint: Time to exacerbation
- There is a natural order in that a primary endpoint is more important than a secondary endpoint
 - Thus, we would like to test the primary null hypothesis first; only if that is rejected, we test the secondary hypothesis
- Both doses are equally important
 - Thus, both doses are simultaneously tested against the control

NOVARTIS

COPD Example Revisited Background (continued)

- We have four hypotheses corresponding to the two doses and the two endpoints; a multiple test procedure is needed
- Standard multiple test procedures could be applied, but do not reflect the relative importance of the two endpoints
 - For example, the Bonferroni test would treat FEV1 and time-toexacerbation as equally important and doesn't reflect the relative order desired
- We need a multiple test procedure that reflects the relative importance and order of the hypotheses based on clinical importance

NOVARTIS

COPD Example Revisited Building a multiple test procedure: Hypotheses

primary (H_1)

secondary

(H_4)

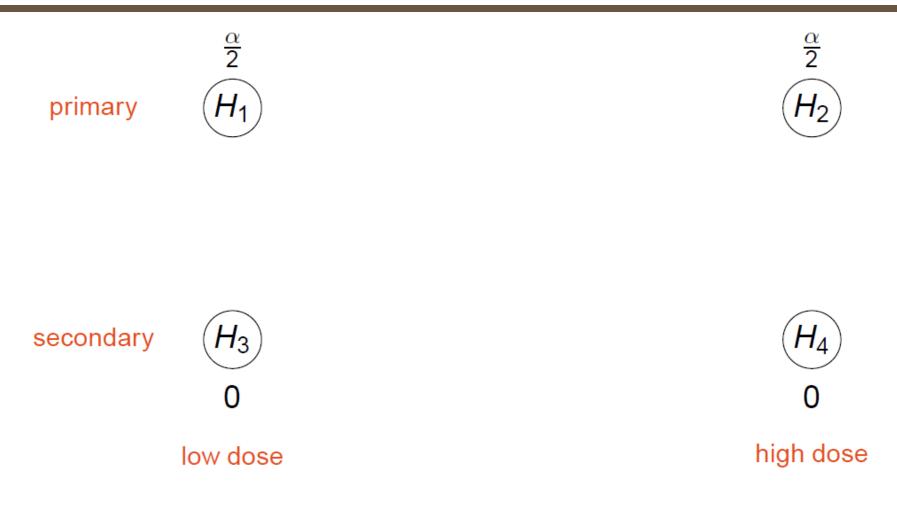
low dose

high dose

80 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

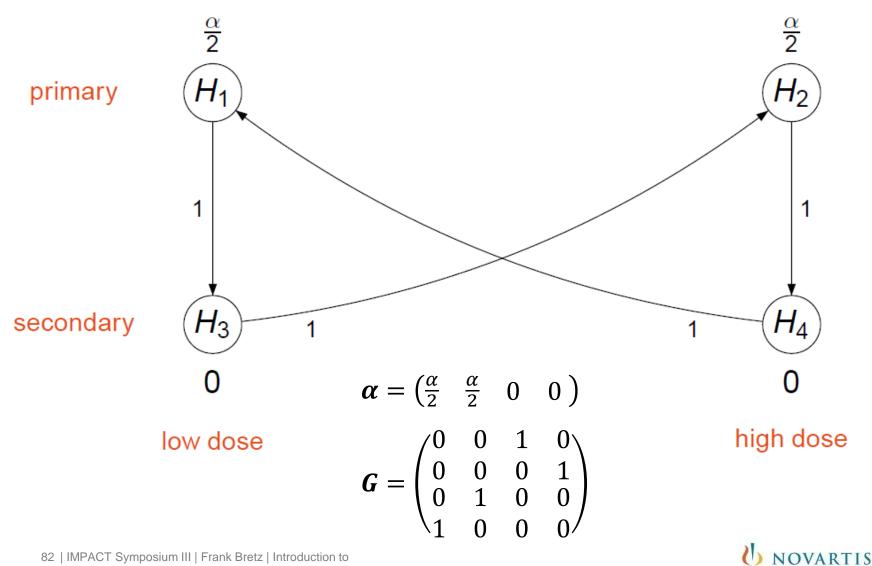
COPD Example Revisited

Building a multiple test procedure: Initial levels α



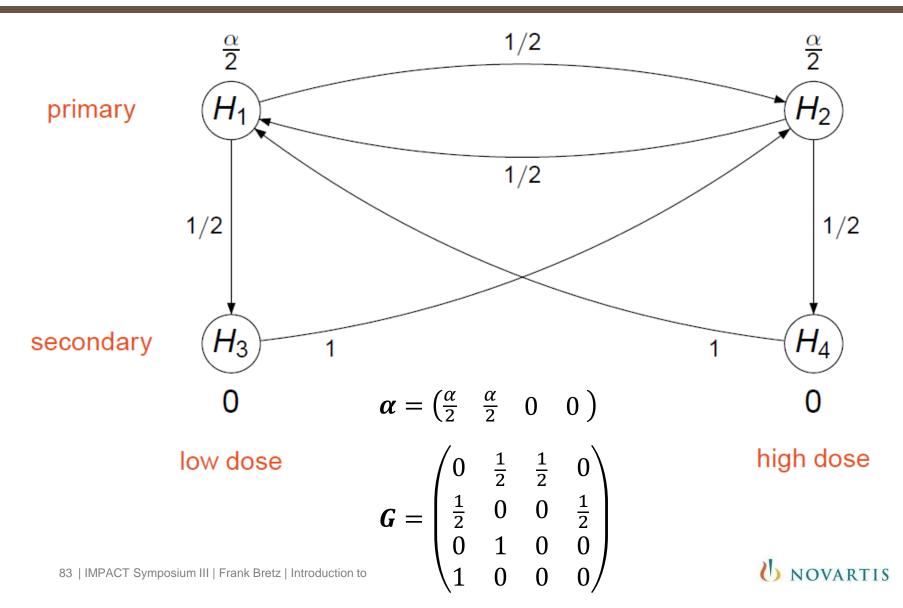
COPD Example Revisited

Building a multiple test procedure: α -propagation

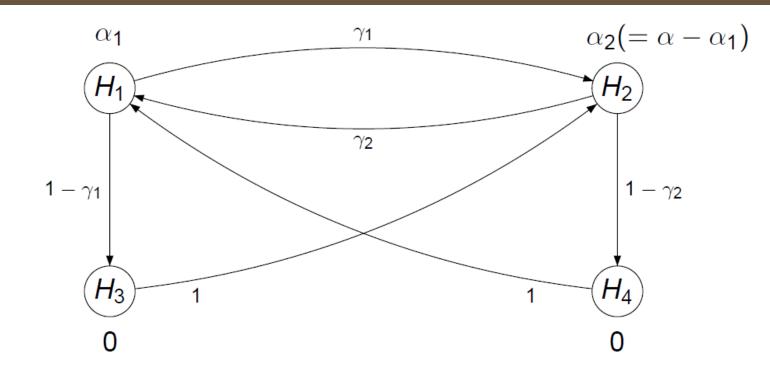


COPD Example Revisited

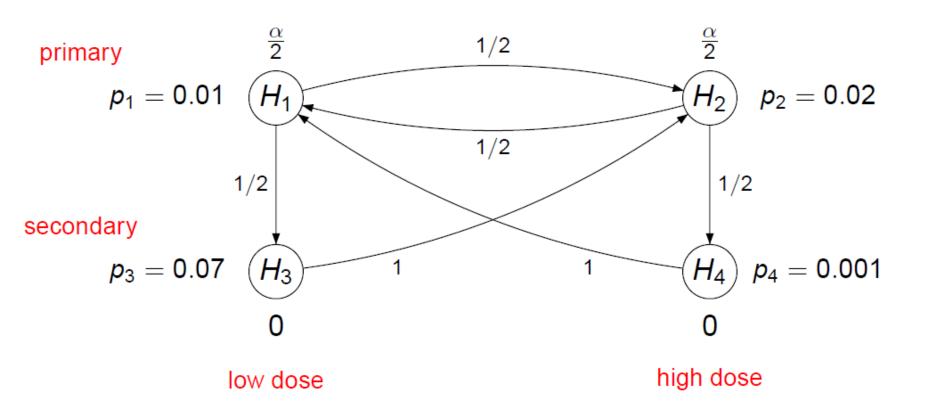
Building a multiple test procedure: Alternative α -propagation

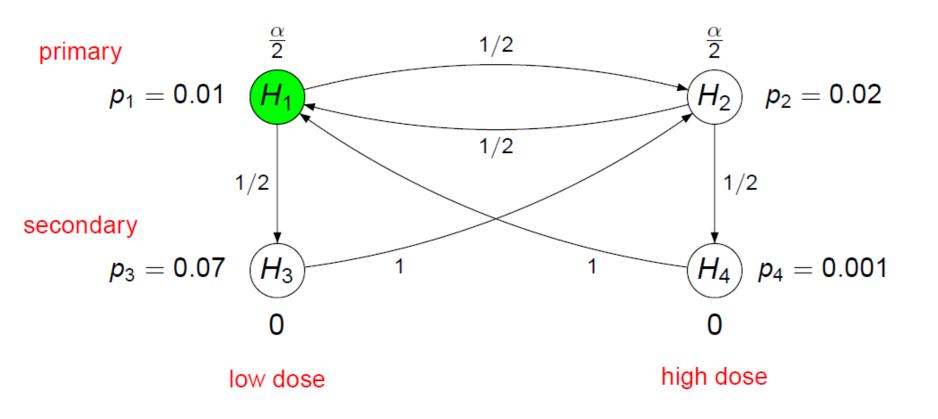


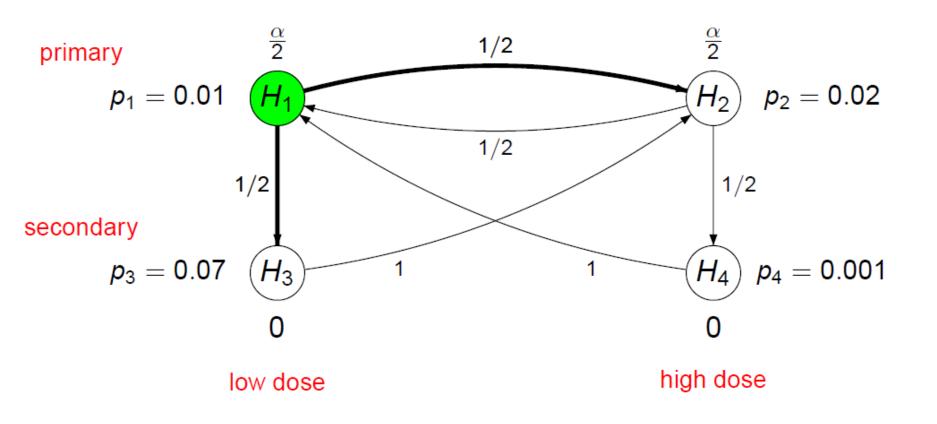
COPD Example Revisited Building a multiple test procedure: General solution

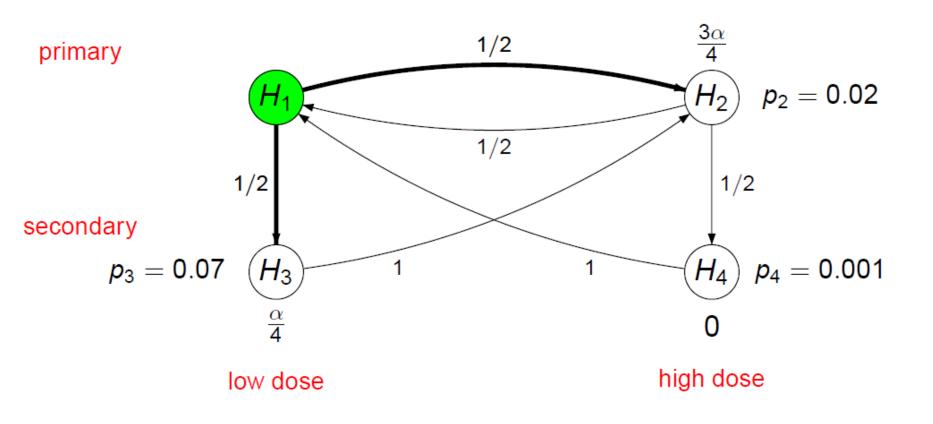


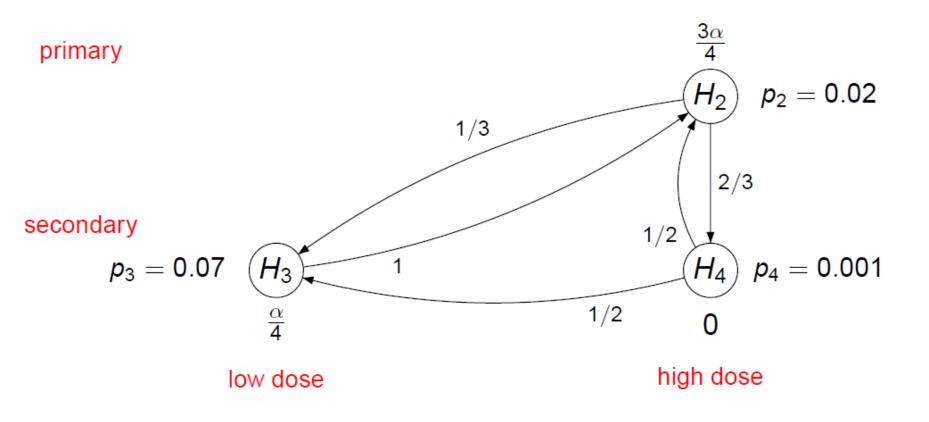
- $\boldsymbol{\alpha} = (\alpha_1 \quad \alpha_2 \quad 0 \quad 0)$ $\boldsymbol{G} = \begin{pmatrix} 0 & \gamma_1 & 1 \gamma_1 & 0 \\ \gamma_2 & 0 & 0 & 1 \gamma_2 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$
- Resulting graph depends on only three parameters α_1, γ_1 , and γ_2 that can be finetuned based on:
 - further clinical considerations, or
 - assumptions about effect sizes, correlations, ...

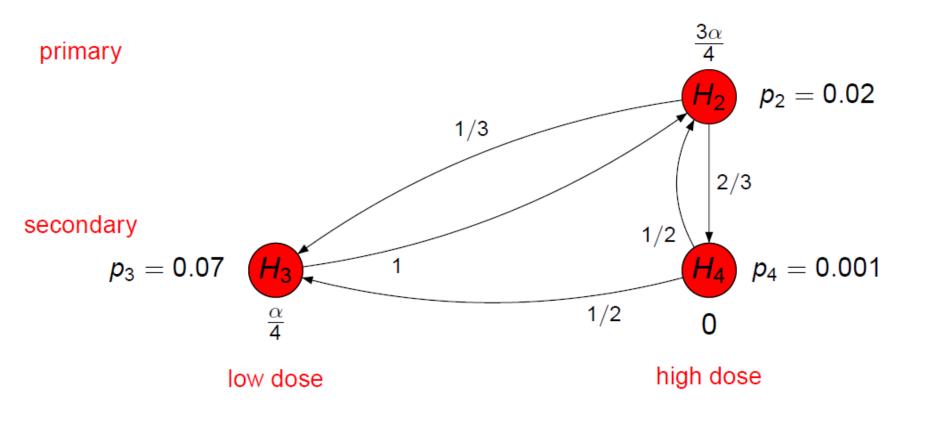












COPD Example Revisited SAS: Main function

```
/* h: indicator whether a hypothesis is rejected (= 1) or not (= 0) (1 \times n \times 1)
   a: initial significance level allocation (1 x n vector)
   w: weights for the edges (n x n matrix)
   p: observed p-values (1 x n vector) */
START mcp(h, a, w, p);
   n = NCOL(h);
   mata = a;
    crit = 0;
    DO UNTIL(crit = 1);
        test = (p < a);
        IF (ANY(test)) THEN DO;
            rej = MIN(LOC(test#(1:n)));
            h[rej] = 1;
            w1 = J(n, n, 0);
            DO i = 1 TO n;
                a[i] = a[i] + a[rej]*w[rej,i];
                IF (w[i,rej]*w[rej,i]<1) THEN DO j = 1 TO n;
                    w1[i,j] = (w[i,j] + w[i,rej]*w[rej,j])/(1 - w[i,rej]*w[rej,i]);
                END;
                w1[i,i] = 0;
            END;
            w = w1; w[rej,] = 0; w[,rej] = 0;
            a[rej] = 0;
            mata = mata // a;
        END;
        ELSE crit = 1;
    END;
    PRINT h; PRINT (ROUND(mata, 0.0001)); PRINT (ROUND(w,0.01));
FINISH;
```

COPD Example Revisited SAS: Example call

```
START mcp(h, a, w, p);
...
FINISH;
```

```
/*** Numerical example ***/
h = \{0\}
          0
                0
                     0
                         };
a = {0.0125 0.0125 0
                     0
                         };
w = {0
          0.5 0.5 0
                         ,
          0 0 0.5 ,
    0.5
    0
          1
                0
                    0
                         ,
                0
          0
                     0
    1
                         };
p = \{0.01\}
        0.02 0.07 0.001};
RUN mcp(h, a, w, p);
QUIT;
```

92 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

COPD Example Revisited *R*: gMCP package

93

- Open source package at <u>http://cran.r-project.org/web/packages/gMCP/</u>
- Provide graphical user interface (GUI) within R through JAVA

₩ gMCP GUI 0.8.3					
<u>F</u> ile E <u>x</u> ample graphs <u>A</u> nalysis <u>E</u> xtras <u>H</u> elp					
	Adjacency Matrix				
		H1	H2	H3	H4
Place new nodes and edges or start the test procedure	H1 0 H2 0.5	-	0.5	0.5	0.5
	H2 0.5 H3 0)	1	0	0.5
0.5	H4 1		0	Ö	0
	Hypothesis	Weight	P-Value	_	
	H1	1/2	0.01 Reject and pass α		
	H2	1/2	0.02		Reject and pass α
	НЗ	0	0.07		Reject and pass α
	H4	0	0.001		Reject and pass α
	Sum of weights: 1;		Load p-values from R		
	Total α:	0.025			
H3 H4 0 No Information about correlations					
	○ Select an R correlation matrix No 4x4-matrices found				
Description Analysis A suitable multiple test proceduere for the COPD example	○ Correlation applicable for Simes test (new feature that still needs testing)				

- Proposed graphical approach offers the possibility to
 - Tailor advanced multiple test procedures to structured families of hypotheses,
 - Visualize complex decision strategies in an efficient and easily communicable way, and
 - Ensure strong FWER control
- Approach covers many common multiple test procedures as special cases

INOVARTIS

• Holm, fixed sequence, fallback, gatekeeping, ...

Introduction

- Common Multiple Test Procedures
- Hierarchical Test Procedure
- Closed Test Procedure
- Graphical Approach
- Summary and Conclusions

NOVARTIS

Summary

- Multiplicity raises challenging problems which affect almost every decision throughout drug development
- Closed test procedure is a general principle to construct powerful multiple test procedures; many common procedures are CTPs
- For structured hypotheses, one can apply the graphical approach, which is based on CTPs
 - Reflect the difference in importance as well as the relationship between the various study objectives

NOVARTIS

 Are often applied to clinical trials with structured families of hypotheses and several levels of multiplicity

- It is critical to choose the suitable method for a particular problem
- There are different types of multiplicity problems that need other methods than those described here, such as:

INOVARTIS

- Safety data analyses
- Large-scale testing in genetics, proteomics etc.
- Post-hoc analyses / data snooping

Any questions?

98 | IMPACT Symposium III | Frank Bretz | Introduction to Multiple Testing | All Rights Reserved

- Alosh, M., Bretz, F., and Huque, M. (2014) Advanced multiplicity adjustment methods in clinical trials. Statistics in Medicine 33(4), 693-713.
- Bretz, F., Maurer, W. and Maca J. (2014) Graphical Approaches to Multiple Testing. To appear as Chapter 14 in: *Clinical Trial Biostatistics and Biopharmaceutical Applications* (ed: Walter Young and Ding-Geng (Din) Chen), Taylor and Francis, Boca Raton
- Bretz, F., Hothorn, T., and Westfall, P. (2010). *Multiple Comparisons* with R. Chapman and Hall, Boca Raton.
- Dmitrienko, A., Tamhane, A. C. and Bretz, F. (Eds.) (2009). *Multiple Testing Problems in Pharmaceutical Statistics*. Chapman & Hall/CRC Biostatistics Series, Boca Raton.
- Westfall, P., Tobias, R. and Wolfinger, R. (2011). *Multiple Comparisons and Multiple Tests Using SAS.* SAS Press, Cary, NC.

- ICH E9 (1998) on "Statistical principles for clinical trials"
- CPMP (2002) Points to consider on "Multiplicity issues in clinical trials"
- FDA draft guidance for industry on "Multiple endpoint analyses" expected for 2014

