Evaluation of Viable Dynamic Treatment Regimes in a Sequentially Randomized Trial of Advanced Prostate Cancer

> Lu Wang Department of Biostatistics University of Michigan

2014 IMPACT Symposium • Cary, NC

Dynamic Treatment Regime

- Therapy of cancer, and many other diseases typically requires multiple stages.
 - ➢ Failure of initial trt to achieve a favorable clinical outcome
 - Recurrence, toxicity, etc
 - > Therapy consists of a sequence of qualitatively different trts
- Dynamic events may affect future treatment decisions.
 - Growing back of solid tumors
 - Metastasizing to other body sites following a response of chemotherapy
 - Regimen-related toxicity

Medical Oncology 101, According to Randy Millikan, M.D. RWSL: "Repeat a Winner, Switch Away from a Loser" The AI Prostate Cancer Trial Thall et al. 2007; Millikan et al. 2008

 One of the pioneer trials designed with re-randomization (12/1998 – 01/2006 at MDACC)

- ❖ 4 chemo combinations (CVD, KA/VE, TEE, TEC) →
 4x3=12 two-stage dynamic treatment strategies
- Binary "Response / No-Response" outcomes, based on drop in PSA, in each course
- Also collected survival outcome

This study was a groundbreaking early example of a Sequential Multiple Assignment Randomized Trial (SMART, Murphy 2005). **Per-Course Outcomes:** (Each course is 8 weeks)

1st Success = [>40% drop in PSA and absence of AD] Repeat a successful trt, otherwise re-randomize the patient among the other 3 trts (*accidentally SMART* !!!)

2nd Success = [>80% drop in PSA and absence of AD]

Strategy (a, b) :

Treat with *a* in a course.

- Repeat the current treatment if **Success** occurs
- Switch to **a*** if **Failure** occurs
- \rightarrow Consecutive S-S with the same regimen \rightarrow Declare victory

 \rightarrow A total of 2 courses with **Failure** \rightarrow Admit defeat

Possible Courses for Strategy (a, a*)

S: Per-Protocol Success;

S: Per-Protocol Failure.

Actual Trial Conduct

Randomize patients fairly among the 4 treatments 1st Success = {>40% drop in PSA and no AD} Repeat a successful trt, otherwise *re-randomize* the patient among the other 3 (*adapt trt within the patient*) 2nd Success = {>80% drop in PSA and no AD} Patient Success = {2 consecutive successful courses}

Patient Failure = {A total of 2 unsuccessful courses, or PD, or TOX} \rightarrow

Stop therapy (an adaptive within-patient decision)

Actual Trial Conduct and Outcomes

The RWSL algorithm as given before, but with
 Failure = { 2 unsuccessful courses, or PD, or TOX }

 Stop therapy

The New Per-Stage Outcomes :

Efficacy = EFF0 if per-protocol response EFF1 if no per-protocol response, but no PD EFF2 if PD EFF3 if inevaluable due to severe TOX

Toxicity = **TOX0** if no TOX **TOX1** if treatment stopped but Efficacy evaluated **TOX2** if so severe that Efficacy not evaluated

Possible Courses for Strategy (a, a*): Viable DTRs

EFFkTOX1: Toxicity at level 1 and Efficacy at any level.

For each patient, we have the following variables:

Treatment Actions

- A_j : the chemo received at the start of course j if the patient actually received one.
- At baseline
 - P_1 : PSA at baseline.
 - V_1 : indicator of high (versus low) disease volume at baseline.
- At the end of course j-1 and just prior to A_j for $j=2,\cdots,5$
 - P_j : PSA
 - T_j : Toxicity
 - E_j : compound measure of efficacy
- Final Survival outcome: X

More Notation:

$$L_{1} = (P_{1}, V_{1}) \qquad L_{j} = (P_{j}, T_{j}, E_{j}, I_{(2(j-1),\infty)}(X)), \ j = 2, ..., 5.$$
$$S_{j} = I_{\{(\text{TOX0}, \text{EFF0})\}} [(T_{j}, E_{j})] \text{ and } F_{j} = I_{\{(\text{TOX0}, \text{EFF1})\}} [(T_{j}, E_{j})]$$

Formally Define Viable DTRs:

$$g_{a,a^*,1}(L_1) = a, \qquad \qquad g_{a,a^*,2}(\overline{L}_2) = \begin{cases} a & \text{if } S_2 = 1\\ a^* & \text{if } F_2 = 1\\ \text{OFF} & \text{if } S_2 \neq 1, F_2 \neq 1, X > 2 \end{cases}$$

$$g_{a,a^*,3}(\overline{L}_3) = \begin{cases} a^* & \text{if } S_2F_3 = 1 \text{ or } F_2S_3 = 1\\ \text{OFF} & \text{if } S_2F_3 \neq 1, \quad F_2S_3 \neq 1 \text{ and } X > 4 \end{cases}$$
$$g_{a,a^*,4}(\overline{L}_4) = \begin{cases} a^* & \text{if } S_2F_3S_4 = 1\\ \text{OFF} & \text{if } S_2F_3S_4 \neq 1 \text{ and } X > 6 \end{cases}$$

Utility 1: Binary Score

$$Y^{\text{bin}} = y^{\text{bin}}(\overline{L}) = \begin{cases} 1 & \text{if } \widetilde{S}_j \widetilde{S}_{j+1} = 1 & \text{for } j = 2, 3 \text{ or } 4 \\ 0 & \text{otherwise} \end{cases}$$

$$\widetilde{S}_j = I_{\{(\text{TOX0}, \text{EFF0}), (\text{TOX1}, \text{EFF0})\}}[(T_j, E_j)]$$

Utility 2: Ordinal Score

$$Y^{\text{ord}} = y^{\text{ord}}(\overline{L})$$

$$= \begin{cases} 1 & \text{if } \widetilde{S}_j \widetilde{S}_{j+1} = 1 \text{ for } j = 2, 3 \text{ or } 4 \\ 0.5 & \text{if } \widetilde{S}_2(1 - \widetilde{S}_3)(1 - \widetilde{S}_5) = 1 \text{ or } (1 - \widetilde{S}_2)\widetilde{S}_3(1 - \widetilde{S}_4) = 1 \\ 0 & \text{otherwise} \end{cases}$$

Utility 3: Expert Score

$C_j = c(E_j, T_j)$	$E_j = \text{Efficacy outcome}$					
		EFF0	EFF1	EFF2	EFF3	
$T_i =$	TOX0	1.0	0.5	0.1	Х	
Toxicity	TOX1	0.8	0.3	0	Х	
outcome	TOX2	Х	Х	Х	0	

 $Y^{\text{expert}} = y^{\text{expert}}(\overline{L}) = \frac{\sum_{j=2}^{5} \{1 - I_{\{\text{OFF,N/A}\}}[A_{j-1}]\}C_{j}}{\sum_{j=2}^{5} \{1 - I_{\{\text{OFF,N/A}\}}[A_{j-1}]\}}$

Utility 4: Log-Survival

Counterfactual Outcomes and Target Endpoint

For each switch rule g_{a,a^*} ,

 $\overline{L}_{(a,a^*)}$: denote the hypothetical outcome $Y_{(a,a^*)} = y\left(\overline{L}_{(a,a^*)}\right)$: counterfactual endpoint $\left(a_{opt}, a_{opt}^*\right) = \arg\max_{(a,a^*)} E\left[Y_{(a,a^*)}\right]$

Saturated Marginal Structural Mean Model

$$E\left[Y_{(a,a^{*})}\right] = \sum_{a_{1}\in\mathcal{A}} \sum_{a_{2}\in\mathcal{A}-\{a_{1}\}} \beta_{a_{1},a_{2}}I_{\{(a_{1},a_{2})\}}\left\{(a,a^{*})\right\}$$

Inverse Probability Weighted Estimator

$$\frac{\sum\limits_{i=1}^{n} \Delta_{a,a^{\star},i} \omega_{i} Y_{i}}{\sum\limits_{i=1}^{n} \Delta_{a,a^{\star},i} \omega_{i}} \quad \text{, where}$$

the weights come from two sources.

$$P\left(A_{j} = a_{j} | \overline{A}_{j-1} = \overline{a}_{j-1}, \overline{L}_{j}, \mathcal{L}\right)$$

$$= P\left(A_{j} = a_{j} | A_{j} \neq N/A, \overline{A}_{j-1} = \overline{a}_{j-1}, \overline{L}_{j}, \mathcal{L}\right) \times P\left(A_{j} \neq N/A | \overline{A}_{j-1} = \overline{a}_{j-1}, \overline{L}_{j}, \mathcal{L}\right)$$
For Treatment Assignment
For Patient Drop-out

* Inverse Probability of Treatment Weights

Group	A_1	A_2	A_3	A_4	ω_1	ω_2	ω_3	ω_4	ω
1	a	OFF	OFF	OFF	4	1	1	1	4
2	a	\boldsymbol{a}	OFF	OFF	4	1	1	1	4
3	\boldsymbol{a}	a^*	OFF	OFF	4	3	1	1	12
4	a	a^*	a^*	OFF	4	3	1	1	12
5	\boldsymbol{a}	a	a^*	OFF	4	1	3	1	12
6	\boldsymbol{a}	\boldsymbol{a}	a^*	a^*	4	1	3	1	12

Estimate the weights to improve estimation efficiency.
 We further considered Inverse Probability of Missing.

Estimated Regime-specific Mean Scores

Estimated Regime-specific Mean Log-survival

Sensitivity Analysis: using worse case and best case imputation schemes for drop-outs

	Expert Score ^{a}	Expert Score ^{b}	$\operatorname{Log} \operatorname{Survival}^{c}$	$\operatorname{Log}\operatorname{Survival}^d$
(CVD, KA/VE)	$0.62 \ (0.47, \ 0.77)$	$0.62 \ (0.47, \ 0.77)$	2.93 (2.59, 3.26)	2.92 (2.58, 3.26)
(CVD, TEC)	$0.63\ (0.49,\ 0.77)$	$0.63\ (0.48,\ 0.78)$	$3.28\ (2.88,\ 3.67)$	$3.27 \ (2.85, \ 3.68)$
(CVD, TEE)	$0.57\ (0.43,\ 0.71)$	$0.57\ (0.43,\ 0.71)$	2.93 (2.32, 3.54)	$2.92\ (2.31,\ 3.53)$
(KA/VE, CVD)	$0.65\ (0.52,\ 0.77)$	$0.67\ (0.55,\ 0.80)$	$3.20 \ (2.65, \ 3.76)$	3.20(2.64, 3.77)
(KA/VE, TEC)	$0.70\ (0.59,\ 0.81)$	$0.73 \ (0.62, \ 0.84)$	$3.05\ (2.69,\ 3.41)$	$3.05\ (2.68,\ 3.42)$
(KA/VE, TEE)	$0.62\ (0.47,\ 0.77)$	$0.65\ (0.50,\ 0.80)$	3.00(2.54, 3.46)	$3.00\ (2.53,\ 3.47)$
(TEC, CVD)	$0.77 \ (0.65, \ 0.89)$	$0.77 \ (0.65, \ 0.89)$	$3.02 \ (2.68, \ 3.36)$	3.18(2.89, 3.47)
(TEC, KA/VE)	$0.72 \ (0.56, \ 0.87)$	$0.72 \ (0.56, \ 0.88)$	$3.13\ (2.60,\ 3.67)$	$3.31 \ (2.80, \ 3.82)$
(TEC, TEE)	$0.73 \ (0.62, \ 0.83)$	$0.73 \ (0.62, \ 0.83)$	$3.03\ (2.63,\ 3.42)$	$3.17\ (2.83,\ 3.50)$
(TEE, CVD)	$0.65\ (0.50,\ 0.80)$	$0.68\ (0.54,\ 0.83)$	$3.06\ (2.43,\ 3.69)$	$3.02\ (2.42,\ 3.63)$
(TEE, KA/VE)	$0.63\ (0.50,\ 0.75)$	$0.66\ (0.53,\ 0.79)$	$2.83 \ (2.38, \ 3.28)$	2.79(2.36, 3.23)
(TEE, TEC)	$0.67\ (0.53,\ 0.81)$	$0.71 \ (0.57, \ 0.84)$	$2.87\ (2.42,\ 3.31)$	2.83(2.39, 3.27)

 a 1 imputed for the dropouts with CVD in the 1st course, and 0 imputed for all other dropouts.

^b 0 imputed for the dropouts with TEC in the 1st course, and 1 imputed for all other dropouts.

 c Maximum of the survival time in reference group imputed for dropouts with KA/VE in the 1st course and 1/2 of the minimum remaining survival time imputed for all other dropouts

^d 1/2 of the minimum remaining survival time in reference group imputed for dropouts with CVD or TEE in the 1st course and Maximum of the survival time imputed for all other dropouts

Some Closing Thoughts on This Trial

- 1. Re-randomization design using "repeat a winner" and "switchaway from a loser" rules is a good idea.
- 2. Limitations of this study
 - Moderate sample size
 - Conservative simultaneous confidence intervals
- 3. Make sure you define patient outcome carefully. It is seldom binary or simple, and it should reflect actual clinical practice.
- 4. Cute DTR and IPW methodologies are the right thing to do, but they are of little use without intelligent medical collaborators.

Prostate Cancer Recurrence Management

- Prostate cancer recurrence need to be managed after initial treatment (EBRT).
- PSA is measured over time as an indicator for increasing risk of recurrence.
- Salvage treatment decision need to be made dynamically to prolong the recurrence free survival

When would be the best time to initiate salvage treatment?

Some Ongoing Research

- The proposed method provides reasonable amount of robustness for the problem
 - Random Forest to provide more robustness and flexibility model for weight estimation.
 - Non-parametric survival estimation without any assumption like proportional hazard.
- Random Survival Forest (Bou-Hamad, 2011) could be more reasonable estimation for the weights
- More efficient maximization method is needed for higher dimension b, e.g. Adaptive grid approach (Leary, 2001)

Dynamic Treatment Regime

Ultimate Goals:

- Personalized Health Care
- How to tailor diagnosis and treatment based on individual's information?
- How to better characterize each patient?

Empirical Data + Novel Statistical Methodology

Patient satisfaction and personalized care
Allocation of scarce and expensive resources (e.g. liver transplantation and HCV treatment)

Better Prognostic Tools

- Survival improvement
- Guidance on adaptive treatment strategies for patients

Acknowledgement

Andrea Rotnitzky

Peter F. Thall Randy Millikan Xihong Lin

Jeremy Taylor

My PhD Students:

- Jincheng Shen
- Yebin Tao

Many other collaborators at U-M Medical School

luwang@umich.edu