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What is Personalized Medicine?

“The right treatment for the right patient (at the right time) ”
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What is Personalized Medicine?

In general: One size does not fit all

I Multiple treatment options may be available
I Patient heterogeneity

• Across patients: What works for one patient may not work for
another

• Within patients: What works now may not work later

Premise: Use information on a patient’s characteristics to
determine which treatment option s/he should receive (and
when. . . )

I Genetic/genomic, demographic,. . .

I Physiologic/clinical measures, medical history,. . .
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Popular Perspective on Personalized Medicine

Subgroup identification/targeted treatment:

I Are there subgroups of patients who are more likely to do
better on one particular treatment than on another?

I Can a treatment be developed that targets a subgroup that is
very likely to benefit from that treatment?

I Can biomarkers be developed to identify such patients?

Focus: Treating and targeting treatment for subgroups of the
population
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Another Perspective on Personalized Medicine

Can we determine how to treat the entire population of
patients?

I Given information on patient’s characteristics, can we
determine the treatment from among the available options
most likely to benefit him/her?

I And by doing so determine how best to treat the population ?

I This is the perspective we will take in this workshop
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Clinical Decision-Making

Clinical practice: Clinicians make (a series of) treatment
decision(s) over the course of a patient’s disease or disorder

I Fixed schedule

I Milestone in the disease process

I Event necessitating a decision

Clinical decision-making: Clinical judgment

I Synthesize all information on a patient up to the point of a
decision to determine next treatment action

I Goal: “Individualize ” the decision to the patient

I Can this be formalized and made evidence-based ?
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Dynamic Treatment Regime

Operationalizing personalized medicine: At any decision point

I Construct a rule that takes as input the available information
on the patient to that point and dictates the next treatment
from among the possible, feasible options

I Rule(s) must be developed based on evidence , i.e., data

Dynamic treatment regime: A set of formal rules , each
corresponding to a decision point

I Each rule dictates the treatment action to be taken at that
point as a function of accrued information on the patient

I Together, the rules determine an algorithm for treating any
patient, referred to collectively as a dynamic treatment regime
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Dynamic Treatment Regime

Assume: There is a clinical outcome by which treatment benefit
can be assessed

I Survival time, CD4 count, indicator of no myocardial
infarction within 30 days, . . .

I Larger outcomes are better

Intuitively: Rules should depend on characteristics (variables ,
covariates ) that exhibit a qualitative interaction with treatment

I “Tailoring variables ”
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Single Decision Point

Simple example: Which treatment to give patients who present
with primary operable breast cancer ?

I Options: L-phenylalnanine mustard and 5-flourouracil (PF) or
PF + tamoxifen (PFT)

I Data: ∼ 1,300 patients in a National Surgical Adjuvant
Breast and Bowel Project (NSABP) clinical trial (Gail and
Simon, 1985)

I Available information: age (years), progesterone receptor (PR)
level (fmol)

I Outcome: Disease-free survival to three years
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Single Decision Point

Gail and Simon rule/regime:

I If age < 50 and PR < 10 fmol ⇒ PF (1); else ⇒ PFT (0)

I Mathematically: The formal rule is

d(age,PR) = I (age < 50 and PR < 10)

Alternatively: Rules of form

d(age,PR) = I (age > 60− 8.7log(PR))

15 / 136



Multiple Decision Points

Cancer treatment: Two decision points

I Decision point 1: Induction chemotherapy

I Decision point 2: Maintenance/intensification treatment
(responders), Salvage chemotherapy (nonresponders)

I Outcome: Survival time
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Multiple Decision Points

C

M

S

Response

No
Response

I At presentation: Information x1; accrued information h1 = x1

I Decision point 1: Three options {c1, c2, c3}; rule 1: d1(h1) ⇒
d1 : h1 → {c1, c2, c3}

I Between decisions 1 and 2: Collect additional information x2,
including responder status

I Accrued information h2 = {x1, chemotherapy at decision 1, x2}
I Decision point 2: Four options {m1,m2, s1, s2} ; rule 2: d2(h2) ⇒

d2 : h2 → {m1,m2} (responders), d2 : h2 → {s1, s2}
(nonresponders)
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Summary

Single decision: 1 decision point

I Information x

I Decision rule d(x), d : x → A = set of treatment options a

I Treatment regime: d

Multiple decisions: K decision points

I Initial information x1, intermediate information xk between
decisions k − 1 and k , k = 2, . . . ,K

I Set of treatment options at decision k ak ∈ Ak

I Accrued information h1 = x1,
hk = {x1, a1, x2, a2, . . . , xk−1, ak−1, xk}, k = 2, . . . ,K

I Decision rules d1(h1), d2(h2), . . . , dK (hK ), dk : hk → Ak

I Dynamic treatment regime d = (d1, d2, . . . , dK )
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Considerations

Realistically: High-dimensional information xk , k = 1, . . . ,K

I Must construct rules that distill this information

I Must identify the (likely very small) subset that are good
tailoring variables

Furthermore: Many possible regimes d

I D = class of all possible dynamic treatment regimes

I Can we find the “best ” set of rules; i.e., the “best ” dynamic
treatment regime in D?
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Optimal Dynamic Treatment Regime

How do we define “best”?

I If an individual patient were to receive treatment according to
the set of rules d1, . . . , dK , that is, according to regime
d = (d1, . . . , dK ), his/her expected outcome would be as large
as possible given the information available on him/her

I If all patients in the population were to receive treatment
according to regime d , the expected (average) outcome for
the population would be as large as possible given the
information available

I Can we formalize this?
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Potential Outcomes

Single decision: Possible treatment options a ∈ A
I For a randomly chosen patient from the population, define the

random variable Y ∗(a) = the outcome the patient would
experience if s/he were to receive treatment option a

I “Potential outcome ”

I E.g., if A = {0, 1} (two possible treatment options), Y ∗(1)=
the outcome a patient would have if s/he were given
treatment 1, and similarly for Y ∗(0)

I Define Y ∗(d) = the outcome a patient would have if s/he
received treatment according to a regime d ∈ D

I E.g., if A = {0, 1} and the patient has information X

Y ∗(d) = Y ∗(1)d(X ) + Y ∗(0){1− d(X )}
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Optimal Dynamic Treatment Regime

Single decision, continued:

I E{Y ∗(d)|X = x} is the expected outcome for a patient with
information x if s/he were to receive treatment according to
regime d ∈ D

I E{Y ∗(d)} = E [ E{Y ∗(d)|X} ] is the expected (average)
outcome for the population if all patients were to receive
treatment according to regime d ∈ D

Optimal regime: dopt is a regime in D such that

I E{Y ∗(d)|X = x} ≤ E{Y ∗(dopt)|X = x} for all d ∈ D and all
values of x

I And thus E{Y ∗(d)} ≤ E{Y ∗(dopt)} for all d ∈ D
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Optimal Dynamic Treatment Regime

Multiple decisions: Same idea, only more complicated

I Initial information X1

I Potential outcomes under a regime d ∈ D

X ∗2 (d), . . . ,X ∗K (d),Y ∗(d)

I E{Y ∗(d)|X1 = x1} ≤ E{Y ∗(dopt)|X1 = x1} for all d ∈ D and
values of x1

I And thus E{Y ∗(d)} ≤ E{Y ∗(dopt)} for all d ∈ D
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Important Philosophical Point

Distinguish between:

I The “best ” treatment for a patient

I The “best ” treatment for a patient given the information
available

Best treatment for a patient: Option abest ∈ A corresponding
to the largest Y ∗(a) for that patient

Best treatment given the information available:

I We cannot hope to determine abest because we can never see
all the potential outcomes on a given patient

I What we can hope to do is to make the optimal decision given
the information available ⇒ find dopt and make
E{Y ∗(dopt)|X = x} as large as possible

24 / 136



Discovery (Estimation) of Optimal Dynamic
Treatment Regimes

Result: This perspective on personalized medicine boils down to
discovery of optimal dynamic treatment regimes based data

I Existing data from observational studies (e.g., registries),
previously conducted clinical trials

I Prospectively collected data from clinical trials designed
specifically for this purpose (coming up)
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Discovery (Estimation) of Optimal Dynamic
Treatment Regimes

Single decision: Data (Xi ,Ai ,Yi ), i = 1, . . . , n

I n subjects indexed by i

I Xi = information observed on subject i

I Ai = observed treatment actually received by subject i

I Yi = observed outcome for subject i

I Goal: Under suitable assumptions , estimate dopt(x) using
these data
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Discovery (Estimation) of Optimal Dynamic
Treatment Regimes

Multiple decisions: Data

(X1i ,A1i ,X2i ,A2i , . . . ,X(K−1)i ,A(K−1)i ,XKi ,Yi ), i = 1, . . . , n

I X1i = Initial information observed on subject i

I Xki , k = 2, . . . ,K = intermediate information between
decisions k − 1 and k on subject i

I Aki , k = 1, . . . ,K = observed treatment actually received by
subject i at decision k

I Yi = observed outcome for subject i ; can be ascertained after
decision K or can be a function of X2i , . . . ,XKi

I Goal: Under suitable assumptions , estimate dopt(x) using
these data
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Discovery (Estimation) of Optimal Dynamic
Treatment Regimes

Challenges:

1. The optimal dynamic treatment regime dopt is defined in
terms of potential outcomes (not the observed data)

2. Were all possibly useful tailoring variables that clinicians used
in the study at each decision point recorded in the data?

3. This sounds hard ; does it really have to be?
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Discovery (Estimation) of Optimal Dynamic
Treatment Regimes

Challenge 1: dopt is defined in terms of potential outcomes

I Need to be able to express the definition of dopt equivalently
in terms of the data

I Possible under certain assumptions

I Butch will demonstrate in the single decision case

I Also possible in the multiple decision case (but harder)
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Discovery (Estimation) of Optimal Dynamic
Treatment Regimes

Challenge 3: Can’t we just piece together results from several studies to
figure out the optimal regime?

I Study comparing induction chemotherapies based on response

I Study comparing maintenance therapies based on survival time
among responders to induction therapy

I Study comparing salvage therapies based on survival time among
nonresponders

I Wouldn’t the regime that uses the “best ” option in each study have
to have the “best ” average outcome?

I Delayed effects: The induction therapy with the highest proportion
of responders might have other effects that render subsequent
treatments less effective in regard to survival

I Result: Must consider the entire sequence of decisions
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Clinical Trials for Discovery of Dynamic
Treatment Regimes

Challenge 2: Conduct a clinical trial specifically designed for
estimation of optimal dynamic treatment regimes

I SMART: Sequential Multiple Assignment Randomized Trial

I Randomize subjects to the treatment options at each decision
point

I Collect extensive, detailed information initially and
intermediate to decision points on possible tailoring variables

Later: Eric and Michael will have more to say on both of these
issues

31 / 136



Clinical Trials for Discovery of Dynamic
Treatment Regimes
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Roadmap for Today

8:40 am – 9:30 am Butch will discuss estimation of optimal
treatment regimes for the single decision
setting

9:30 am – 9:45 am Break

9:45 am – 10:35 am Eric will discuss estimation of optimal
dynamic treatment regimes for the mul-
tiple decision setting, SMART studies

10:35 am – 10:50 am Break

10:50 am – 11:30 am Michael will provide an overview of
some more advanced topics, including
approaches for handling high dimen-
sional information and censored out-
comes , challenges associated with mak-
ing inference , open problems
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Optimal Regime

Assume: Large outcomes are good

The optimal regime:

I The regime that, if followed by all patients in the population,
yields the largest outcome on average

Goal: Given data , (evidence ) from a clinical trial or observational
study, estimate the optimal regime satisfying this definition

I For simplicity : Consider regimes involving a single
decision /rule
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Statistical Framework

Simplest setting: A single decision with two treatment options

Observed data: (Yi ,Xi ,Ai ), i = 1, . . . , n, iid

I Yi outcome, Xi baseline covariates, Ai = 0, 1 treatment
received

Treatment regime: A single rule

I A function d : X → {0, 1}
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Application

Simple example: How to treat patients with primary operable
breast cancer with positive nodes (a single decision point)?

I Options : L-phenylalanine mustard and 5-fluorouracil (PF) or
PF + tamoxifen (PFT)

I Data from ∼ 1,300 patients in a National Surgical Adjuvant
Breast and Bowel Project (NSABP) clinical trial (Gail and
Simon, 1985)

I Information : age (years), progesterone receptor level (PR;
fmol)
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Application

Gail and Simon rule:

I If age < 50 and PR < 10 fmol =⇒ PF (1); otherwise =⇒
PFT (0)

I Mathematically , the rule is

d(age,PR) = I (age < 50 and PR < 10)

I The treatment regime uses this rule to determine treatment
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Statistical Framework

I Even simpler example : d(X ) = I (age ≤ 50)

I d ∈ D, the class of all regimes

I Optimal regime : If followed by all patients in the population,
would lead to largest average outcome among all regimes in D
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Potential Outcomes

Formalize: We can hypothesize potential outcomes

I Y ∗(1) = outcome that would be achieved if patient were to
receive 1; Y ∗(0) defined similarly

I We observe Y = Y ∗(1)A + Y ∗(0)(1− A)

I =⇒ E{Y ∗(1)} is the average outcome if all patients in the
population were to receive 1; and similarly for E{Y ∗(0)}
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Potential Outcomes

No unmeasured confounders: Assume that

Y ∗(0),Y ∗(1) ⊥⊥ A|X

I X contains all information used to assign treatments in the
data

I Automatically satisfied for data from a randomized trial

I Standard but unverifiable assumption for observational studies
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Potential Outcomes

I Implies that

E{Y ∗(1)} = E [E{Y ∗(1)|X}]
= E [E{Y ∗(1)|A = 1,X}]
= E{E (Y |A = 1,X ) }

and similarly for E{Y ∗(0)}
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Optimal Regime

Potential outcome for a regime:

I For any d ∈ D, define Y ∗(d) to be the potential outcome for
an arbitrary individual in our population if, possibly contrary
to fact, he/she was assigned treatment in accordance to
treatment regime d ; that is,

Y ∗(d) = Y ∗(1)d(X ) + Y ∗(0){1− d(X )} (1)

I E{Y ∗(d)} is the mean response of a population all treated
according to the regime d
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Optimal Regime

I Optimal regime : Leads to largest E{Y ∗(d)} among all
d ∈ D; i.e.,

dopt = arg maxd∈D E{Y ∗(d)}

I (1) implies that

E{Y ∗(d)} = E [E{Y ∗(d)|X}] = E
[
E{Y ∗(1)|X}d(X )

+ E{Y ∗(0)|X}{1− d(X )}
]

= E
[

E (Y |A = 1,X )d(X ) + E (Y |A = 0,X ){1− d(X )}
]

= E [µ(1,X )d(X ) + µ(0,X ){1− d(X )}],

where E (Y |A,X ) = µ(A,X )
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Optimal Regime

I dopt(x) = arg maxa={0,1} E{Y ∗(a)|X = x}
I Thus dopt(X ) = I [E{Y ∗(1)|X} > E{Y ∗(0)|X}] =

I{µ(1,X ) > µ(0,X ) }
I Result : If E (Y |A,X ) = µ(A,X ) were known , we could find

dopt
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Estimating the Optimal Regime

Problem: E (Y |A,X ) is not known

I Posit a model µ(A,X ;β) for E (Y |A,X )

I If µ(A,X ;β) is correct , E (Y |A,X ) = µ(A,X ;β0) for some β0
I Estimate β based on observed data =⇒ β̂ (e.g., least squares)

I Estimate
E{Y ∗(d)} = E [µ(1,X , β0)d(X ) + µ(0,X , β0){1− d(X )}] by

n−1
n∑

i=1

[µ(1,Xi , β̂)d(Xi ) + µ(0,Xi , β̂){1− d(Xi )}]
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Estimating the Optimal Regime

I Estimate dopt by d̂opt
reg (X ) = I{µ(1,X ; β̂) > µ(0,X ; β̂) }

I “Regression estimator ”

I Estimator for E{Y ∗(dopt)}

REG (β̂) = n−1
n∑

i=1

[µ(1,Xi , β̂)d̂opt
reg (Xi )+µ(0,Xi , β̂){1−d̂opt

reg (Xi )} ].

Concern: µ(A,X ;β) may be misspecified , so d̂opt
reg could be far

from dopt
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Estimating the Optimal Regime

Alternative perspective: µ(A,X ;β) defines a class of regimes

d(X , β) = I{µ(1,X ;β) > µ(0,X ;β)},

indexed by β, that may or may not contain dopt

I E.g., suppose in truth

E (Y |A,X ) = exp{1 + X1 + 2X2 + 3X1X2 + A(1− 2X1 + X2)}

=⇒ dopt(X ) = I (X2 ≥ 2X1 − 1)
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Estimating the Optimal Regime

I Posit
µ(A,X ;β) = β0 + β1X1 + β2X2 + A(β3 + β4X1 + β5X2)

I The regimes I{µ(1,X ;β) > µ(0,X ;β)} define a class Dη with
elements

I (X2 ≥ η1X1+η0) or I (X2 ≤ η1X1+η0), η0 = −β3/β5, η1 = −β4/β5

depending on the sign of β5
I Notice that the parameter η is defined as a function of β

I The optimal regime in this case is contained in Dη
I However, the estimated regime I{µ(1,X ; β̂) > µ(0,X ; β̂)}

may not estimate the best regime within the class Dη if the
posited model is wrong
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Optimal Restricted Regime

Suggests: Consider directly a restricted set of regimes
Dη = {d(X , η)} indexed by η

I Write dη(X ) = d(X , η)

I Such regimes may be motivated by a regression model or
based on cost , feasibility in practice, interpretability; e.g.,
d(X , η) = I (X1 < η0,X2 < η1)

I Dη may or may not contain dopt but still of interest

I Optimal restricted regime dopt
η (X ) = d(X , ηopt),

ηopt = arg maxη E{Y ∗(dη)}

I =⇒ Estimate the optimal restricted regime by estimating ηopt
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Estimating the Optimal Restricted Regime

Approach: Maximize a “good ” estimator for E{Y ∗(dη)} in η

I Missing data analogy:

I Let Cη denote η-regime consistency indicator; that is,

Cη = Ad(X , η) + (1− A){1− d(X , η)}

I “Full data ” are {Y ∗(dη),X}; “observed data ” are
(Cη,CηY ,X ), where

I =⇒ Only a subset of subjects have observed outcomes under
d(X , η); the rest are missing
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Estimating the Optimal Restricted Regime

I π(X ) = pr(A = 1|X ) is the propensity score for treatment

I The propensity score is known for randomized studies, or can
be estimated using the data (Ai ,Xi ), i = 1, . . . , n say using
logistic regression π(X ; γ) and estimate γ by γ̂.

I The propensity of receiving treatment consistent with d(X , η)

πc(X ; η) = pr(Cη = 1|X ) = E (Cη|X )

= E [Ad(X , η) + (1− A){1− d(X , η)}|X ]

= π(X )d(X , η) + {1− π(X )}{1− d(X , η)}

I Write πc(X ; η, γ) with π(X ; γ)
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Estimating the Optimal Restricted Regime

Estimators for E{Y ∗(dη)}:
I Inverse probability weighted estimator

IPWE (η) = n−1
n∑

i=1

Cη,iYi

πc(Xi ; η, γ̂)
.

I Consistent for E{Y ∗(dη)} if π(X ; γ) (hence πc(X ; η, γ)) is
correct
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Estimating the Optimal Restricted Regime

I Doubly robust augmented inverse probability weighted
estimator

AIPWE (η) = n−1
n∑

i=1

{
Cη,iYi

πc(Xi ; η, γ̂)
−

Cη,i − πc(Xi ; η, γ̂)

πc(Xi ; η, γ̂)
m(Xi ; η, β̂)

}
,

m(X ; η, β) = E{Y ∗(dη)|X} = µ(1,X ;β)d(X , η)+µ(0,X ;β){1−d(X , η)}

and µ(A,X ;β) is a model for E (Y |A,X )

I Consistent if either π(X , γ) or µ(A,X ;β) is correct
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Augmented Estimator

Under MAR: Y ∗(dη)⊥⊥Cη|X
I If γ̂

p−→ γ∗ and β̂
p−→ β∗, this estimator

p−→

E

{
CηY

πc(X ; η, γ∗)
− Cη − πc(X ; η, γ∗)

πc(X ; η, γ∗)
m(X ; η, β∗)

}
= E

[
Y ∗(dη) +

{
Cη − πc(X ; η, γ∗)

πc(X ; η, γ∗)

}
{Y ∗(dη)−m(X ; η, β∗)}

]
= E{Y ∗(dη)}+ E

[{
Cη − πc(X ; η, γ∗)

πc(X ; η, γ∗)

}
{Y ∗(dη)−m(X ; η, β∗)}

]
I Hence the estimator is consistent if either

• π(X ; γ∗) = π(X ) ⇒ πc(X ; η, γ∗) = πc(X ; η) (propensity
correct)

• µ(A,X ;β∗) = µ(A,X ) ⇒ m(X ; η, β∗) = m(X ; η) (regression
correct )

• Double robustness
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Estimating the Optimal Restricted Regime

Result: Estimators η̂opt for ηopt obtained by maximizing IPWE (η)
or AIPWE (η) in η

I Estimated optimal restricted regime d̂opt
η (X ) = d(X , η̂opt)

I Non-smooth functions of η; must use suitable optimization
techniques

I Estimators for E{Y ∗(dη)}

IPWE (η̂optipwe) or AIPWE (η̂optaipwe)

Can calculate standard errors

I Semiparametric theory : AIPWE (η) is more efficient than
IPWE (η) for estimating E{Y ∗(dη)}

I =⇒ Estimating regimes based on AIPWE (η) should be
“better ”
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Empirical Studies

Extensive simulations: One representative scenario

I True E (Y |A,X ) of form

µt(A,X ;β) = exp{β0+β1X 2
1 +β2X 2

2 +β3X1X2+A(β4+β5X1+β6X2)}

I Misspecified model for E (Y |A,X )

µm(A,X ;β) = β0 + β1X1 + β2X2 + A(β3 + β4X1 + β5X2)

I =⇒ Dη = {I (η0 + η1X1 + η2X2 > 0)}, dopt ∈ Dη
I True propensity score logit{πt(X ; γ)} = γ0 + γ1X 2

1 + γ2X 2
2

I Misspecified propensity score
logit{πm(X ; γ)} = γ0 + γ1X1 + γ2X2

57 / 136



Empirical Studies

Both outcome regression models define a class of treatment
regimes Dη = {I (η0 + η1X1 + η2X2 > 0)}, so that clearly
dopt ∈ Dη

I Expressed in this form, regimes in Dη do not have a unique
representation.

I achieved uniqueness by imposing ‖ η ‖= (ηTη)1/2 = 1.

I In this case, dopt ∈ Dη corresponds to
η = (η0, η1, η2)T = (−0.07,−0.71, 0.71)T
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Simulation

I Truth: (η0, η1, η2) = (−0.07,−0.71, 0.71) and
E{Y ∗(dopt)} = 3.71

I Q(η) = E{Y ∗(dη)}, obtained using 106 Monte Carlo
simulations

Method η̂0 η̂1 η̂2 Ê{Y∗(dopt )} SE Cov. Q(η̂opt )

RGµt -0.07 (0.02) -0.71 (0.01) 0.71 (0.01) 3.70 (0.14) – – 3.71 (0.00)
RGµm -0.51 (0.26) -0.49 (0.32) 0.46 (0.33) 3.44 (0.18) – – 3.27 (0.19)

PS correct
IPWE -0.07 (0.15) -0.69 (0.11) 0.68 (0.11) 4.01 (0.26) 0.28 86.1 3.63 (0.07)
AIPWEµt -0.07 (0.05) -0.71 (0.03) 0.70 (0.03) 3.72 (0.15) 0.15 94.7 3.70 (0.01)
AIPWEµm -0.06 (0.12) -0.69 (0.12) 0.69 (0.13) 3.85 (0.21) 0.23 91.8 3.66 (0.07)

PS incorrect

IPWE -0.38 (0.22) -0.56 (0.30) 0.55 (0.31) 4.06 (0.22) 0.23 69.4 3.42 (0.20)
AIPWEµt -0.07 (0.05) -0.70 (0.02) 0.70 (0.02) 3.72 (0.15) 0.15 95.2 3.70 (0.01)
AIPWEµm -0.23 (0.22) -0.62 (0.25) 0.61 (0.27) 3.81 (0.18) 0.19 94.1 3.57 (0.20)
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Performance: Empirical CDFs of over 1000 data sets of expected
outcome using d̂opt

reg , d̂opt(η̂optipwe), d̂opt(η̂optaipwe) to assign treatment
divided by E (Y ∗(dopt)} under true and misspecified models
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Application: NSABP Trial

Recall: Two treatment options

I A = 0 if PFT, = 1 if PF

I Y = 1 if patient survived disease-free to 3 years, = 0
otherwise

I X = (age, PR)

I Consider regimes of the form
d(X , η) = I (age < η0 and PR < η1)

I Gail and Simon : η0 = 50, η1 = 10

I Estimated optimal regimes :

η̂opt0 η̂opt1 Est. E{Y ∗(dopt
η )} (95% CI)

IPWE 56 5 0.681 (0.644,0.717)
AIPWE 60 9 0.686 (0.651,0.722)
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Discussion

I New methods for estimating an optimal treatment regime
within a specified class

I Robustness to misspecification (AIPWE )

I Single decision point

I Extension to multiple decisions; is a competitor to Q- and
A-learning
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Workshop Outline

Introduction to Personalized Medicine and Dynamic Treatment
Regimes

Estimation of Optimal Dynamic Treatment Regimes for a Single
Decision

Estimation of Optimal Dynamic Treatment Regimes for Multiple
Decisions

Advanced Topics in Personalized Medicine and Dynamic
Treatment Regimes
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Dynamic Treatment Regimes

I Motivation : treatment of chronic illness
I Some examples: HIV/AIDS, cancer, depression, schizophrenia,

drug and alcohol addiction, ADHD, etc.
I Multistage decision making problem
I Longer-term treatment requires consideration and tradeoff of

present versus longer term benefit.

I Dynamic treatment regimes (DTRs)
I Operationalize multistage decision making via as sequence of

decision rules
I One decision rule for each time (decision) point
I A decision rule is a function inputs patient history and outputs

a recommended treatment

I Aim to optimize some cumulative clinical outcome
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Related Problems

I Construction and inference for policies have applications
beyond medicine

1. Artificial Intelligence and Reinforcement Learning (autonomous
helicopter, drones, etc., Ng 2003)

2. Marketing (Simester, Sun and Tsitsiklis, 2003)
3. Active labor market policies (Lechner and Miquel, 2010)
4. Adaptive learning for games (tux cart, plants vs. zombies)
5. . . .
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Roadmap

1. Two examples of SMARTs

2. Q-learning

3. Whirlwind tour of known issues
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Dramatized Example

I Addiction management example inspired by the ExTENd and
COMBINE trials (Murphy, 2005, Qian et. al., 2012)

I Devising two-time point txt strategy for alcohol dependent
patients

I Initial txt choices Naltrexone (NTX) and Combined Behavioral
Intervention (CBI)

I At six-months responders classified as responders or
non-responders

I For responders to initial txt, followup txt choices are telephone
monitoring (TEL) and telephone monitoring + counseling
(TEL+Counseling)

I For non-responders to initial txt, followup txt choices are
switch initial txts (NTX ↔ CBT), or step-up initial txt CBI +
NTX + Enhanced monitoring (CBI + NTX +EM)

I Primary outcome: percent days abstinent in one year
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Dramatized Ex.

D

NTX

Txt A

CBI

Txt B

Response?

Response?

D

No

D

No

CBI+NTX+EM

Txt NR AA

CBI

Txt NR AB

DYes

D

Yes

TEL

Txt R A

TEL+Counseling

Txt R B

TEL

Txt R A

TEL+Counseling

Txt R B
CBI+NTX+EM

Txt NR BA

NTX

Txt NR BB
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Examples of Simple Treatment Regimes

I Regime 1: Prescribe NTX initially; then assign TEL to
responders; and assign step-up to non-responders.

I Regime 2: Prescribe CBI initially; then assign
TEL+Counseling to responders; and assign step-up to
non-responders.
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Choosing a Regime

I If we do not take into account individual patient
characteristics, there are 8 possible regimes. How can we
empirically estimate the best treatment regime?

I Myopic approach

1. Conduct two-arm trial of NTX vs CBI, pick ‘winner’ based on
mean comparison

2. Conduct a follow-up study that initially assigns the ‘winner’
from step 1, then randomizes responders to either TEL or TEL
+ Counseling, and randomizes non-responders to step-up or
switch. Choose ‘winners’ within the responder and
non-responder groups using mean comparison.
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Myopic Approach: Step 1

R

NTX

Txt A

CBI

Txt B
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Myopic Approach: Step 1

R

NTX

Txt A

40

CBI

Txt B38

I Nbrs in red denote days abstinent in six-month period

I NTX is yields better immediate six-month outcome
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Myopic Approach: Step 2

NTX

Txt A

Response?

R

No

CBI+NTX+EM

Txt NR AA

CBI

Txt NR AB

R

Yes

TEL

Txt R A

TEL+Counseling

Txt R B
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Myopic Approach: Step 2

NTX

Txt A

40

Response?

R

No

CBI+NTX+EM

Txt NR AA

25

CBI

Txt NR AB

20

R

Yes

TEL

Txt R A

30

TEL+Counseling

Txt R B

30

I Myopic regime: Initially prescribe NTX, then assign step-up
for non-responders, and assign TEL for responders

I Assuming that 50% of patients respond, this regime results in
an average of 33.75% days abstinent over a one-year period

I Is this optimal among the eight regimes considered?
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SMART Trial

R

NTX

Txt A

CBI

Txt B

Response?

Response?

R

No

R

No

CBI+NTX+EM

Txt NR AA

CBI

Txt NR AB

RYes

R

Yes

TEL

Txt R A

TEL+Counseling

Txt R B

TEL

Txt R A

TEL+Counseling

Txt R B
CBI+NTX+EM

Txt NR BA

NTX

Txt NR BB
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SMART Trial

R

NTX

Txt A

40

CBI

Txt B38

Response?

Response?

R

No

R

No

CBI+NTX+EM

Txt NR AA

25

CBI

Txt NR AB

20

RYes

R

Yes

TEL

Txt R A

30

TEL+Counseling

Txt R B

30

TEL

Txt R A30

TEL+Counseling

Txt R B40
CBI+NTX+EM

Txt NR BA25

NTX

Txt NR BB20
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Delayed Effects

I Optimal regime: initially assign CBI, then assign
TEL+Counseling to responders, and step-up to
non-responders

I Assuming 50% of patients respond, this regime results in an
average of 35.25% days abstinent over a one-year period.

I Myopic regime results in suboptimal patient care
I Giving CBI initially taught responders to more effectively use

counseling yielding better long term outcomes
I This is delayed effect of assigning CBI
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Delayed Effects, cont’d

I Chronic illness requires consideration of treatment sequences
I Must accommodate intermediate information including prior

txts into current txt choice
I Delayed effects
I Berkson’s fallacy (see Gail and Benichou, 2000)
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An Example Policy for ADHD

Prior medication?
Low
dose
MEDS

Yes
Adequate response? Continue

MEDS

Yes

High adherence?

No

Add
BMOD

NoIntensify
MEDS

YesLow
dose
BMOD

No

Adequate response?

Continue
BMOD

Yes

High adherence?
No

Intensify
BMOD

Yes

Add
MEDS

No
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ADHD Trial (Pelham, PI)

R

Low Intensity BMOD

Treatment A

Low Intensity MEDS

Treatment B

Response?

Response?

R

No

R

No

Low Intensity BMOD

Yes

Continue

Augment with MEDS

Treatment AA

Intensify BMOD

Treatment AB

Low Intensity MEDS

Yes

Continue

Augment with BMOD

Treatment BA

Intensify MEDS

Treatment BB
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Roadmap

1. Two examples of SMARTs

2. Q-learning

3. Whirlwind tour of known issues
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Data

I (X1,A1,X2,A2,Y ) for each individual
Xk : Observations available at stage k
Ak : Treatment at stage k
Y : Primary outcome (larger is better)
Hk : History at stage k , H1 = X1, H2 = (X1,A1,X2)

I The regime, d = {d1, d2}, dk : Hk → Ak , should have high
Value: V d = Ed (Y )

I The value corresponds to the average outcome if all patients
are assigned treatment according to d

I Optimal decision rule dopt satisfies Edopt

Y = supd EdY
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Review: Dynamic Programming

I Optimal regime dopt can be derived using dynamic
programming (Bellman, 1957)

I Define
I Q2(h2, a2) , E

(
Y
∣∣H2 = h2,A2 = a2

)
I Y ∗ , maxa2 Q2(H2, a2)
I Q1(h1, a1) , E

(
Y ∗

∣∣H1 = h1,A1 = a1
)

I dopt
k (hK ) = arg maxak Qk(hk , ak)
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Constructing a DTR from Data: Q-Learning

I When system dynamics are known dynamic programming
yields the optimal DTR

I We only have data!

I Q-learning mimics dynamic programming but replaces
conditional expectations with (typically linear) regression
models
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Simple Version of Q-Learning

Two stages; linear regressions; Ak ∈ {0, 1}, Hk1,Hk2 features of
patient history, Hk :

I Stage 2 regression: Regress Y on H21,H22 to obtain
Q̂2(H2,A2) = β̂T21H21 + β̂T22H22A2

I d̂2(H2) = arg maxa2 Q̂2(H2, a2) = arg maxa2 β̂
T
22H22a2

I Ỹ = β̂T21H21 + maxa2 β̂
T
22H22a2

I Ỹ is a predictor of maxa2 Q2(H2, a2)

I Stage 1 regression: Regress Ỹ on H11, H12 to obtain
Q̂1(H1,A1) = β̂T11H11 + β̂T12H12A1

I d̂1(H12) = arg maxa1 Q̂1(H1, a1) = arg maxa1 β̂
T
12H12a1
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I Ỹ is a predictor of maxa2 Q2(H2, a2)

I Stage 1 regression: Regress Ỹ on H11, H12 to obtain
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Q-learning Positives

I Natural approximate dynamic programming approach
I Linear models are common but non-essential

I Parsimonious and interpretable
I More flexible models can be used to define the Q-functions

(e.g., boosting, random forests, etc.)

I Regression models are well-understood
I Diagnostic and validation tools exist
I EDA is straightforward
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Roadmap

1. Two examples of SMARTs

2. Q-learning

3. Whirlwind tour of known issues
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Q-learning . . . Opportunities

I Non-smooth non-monotone max-operator
I Linear models are rarely correctly specified for Q1

I Non-smoothness induces non-regularity so that standard
methods for inference, e.g., the bootstrap and taylor series
arguments, are invalid

I Non-monotone transformations are difficult to model

I Q-learning indirectly estimates dopt through the conditional
mean functions

I Recall, dopt
k = arg maxak Qk(hk , ak) which depends only on the

sign of Qk(hk , 1)− Qk(hk , 0).
I Analog in classification: logistic classification vs. large-margin

classification
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Linear Models are Rarely Correctly Specified for
Q1

I Toy generative model

X1 ∼ Normal(0, 1), ξ ∼ Normal(0, 1/2),
X2 = ζX1 + ξ, AK ∼ Uniform{0, 1}, k = 1, 2,
φ ∼ Normal(0, 1/2), Y = 1.25A1A2 + A2X2 − A1X1 + φ,

ζ governs the correlation between X1 and X2

I Linear model is correct for Q2

Q2(H2,A2) = 1.25A1A2 + A2X2 − A2X1

I Nonlinear model required for Q1

Q1(H1,A1) =
1

2
√

2π
exp

{
−2(1.25A1 + ζX1)2

}
+ (1.25A1 + ζX1)Φ (2(1.25A1 + ζX1))
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Linear Models are Rrarely . . . cont’d

I Nonlinear model required for Q1

Q1(H1,A1) =
1

2
√

2π
exp

{
−2(1.25A1 + ζX1)2

}
+ (1.25A1 + ζX1)Φ (2(1.25A1 + ζX1))

I This is an idealized setting, yet:
I Linear model assumption holds only when ζ = 0, but this is

unlikely in practice
I Even seasoned data analysts would likely have trouble

identifying the correct functional form given limited data
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Non-smoothness Invalidates Std Inference

I Due to max-operator, Q1(h1, a1) is a non-smooth functional
of the generative distribution

I No regular estimators of Q1 exist
I No asymptotically unbiased estimators of Q1(h1, a1) exist
I Estimators do not converge uniformly over parameter space;

standard approaches like bootstrap and Taylor series
arguments are invalid

I There is now a small industry built around trying to alleviate
some of these problems

I Thresholding and penalized methods (Moodie and Richardson,
2009; Chakraborty et al., 2010; Song et al., 2012)

I Local asymptotic approaches (Laber et al., 2012; SAS PROC
QLEARN)

I Resampling approaches (Chakraborty et al., 2012; R package
qLearn)
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Non-smooth Mon-monotone Transformations

I Recall Ỹ = maxa2 Q̂2(H2, a2) = β̂ᵀ21H21 + max(β̂ᵀ22H22, 0)

Before maximization
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Non-smooth Mon-monotone Transformations

I Recall Ỹ = maxa2 Q̂2(H2, a2) = β̂ᵀ21H21 + max(β̂ᵀ22H22, 0)

Before maximization
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Ŷ

●

A1 = 1
A1 = −1

94 / 136



Non-smooth Mon-monotone Transformations

I Recall Ỹ = maxa2 Q̂2(H2, a2) = β̂ᵀ21H21 + max(β̂ᵀ22H22, 0)

Before maximization
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Non-smooth Non-monotone Transformations,
cont’d

I Dealing with non-smooth, non-monotone transformations is
difficult in practice

I On approach is to interchange modeling and maximization
I Only need to model smooth transformations of the data
I Requires more modeling (see Laber et al., 2012)
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Q-learning Indirectly Estimates dopt

I dopt
k (hk) = arg maxak Qk(hk , ak) = 1Qk (hk ,1)−Qk (hk ,0)>0

I Thus, dopt
k (hk) depends only on the sign of contrast

Qk(hk , 1)− Qk(hk , 0)
I Q-learning estimates Qk(hk , aK ), hence does not directly

target dopt

I A-learning (Murphy, 2003; Murphy et al., 2004) targets
Qk(hk , 1)− Qk(hk , 0), is closer but still indirect

I Recent classification-based estimators of Zhang et al. (2012),
Zhao et al. (2012), and Xi et al. (2012) directly target dopt

I These are multistage extensions of what Butch introduced in
the previous segment
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Classification Estimators

I For clarity, simplify development of Zhao et al. (2012)
I Assume Y is nonnegative
I Assume A1 and A2 are randomly assigned as in a SMART
I Recode Ak to take values in {−1, 1}

I For any policy d the value equals

EdY = E
(

Y 1A2=d2(H2)1A1=d1(H1)

p(A1|H1)p(A2|H2)

)
I Empirical analog

1

n

n∑
i=1

ωi1min{A2id2(H2i ),A1id1(H1i )}≥0,

where wi , Yi/p(A1i |H1i )p(A2i |H2i )
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Classification Estimators, cont’d
I Empirical analog

1

n

n∑
i=1

ωi1min{A2id2(H2i ),A1id1(H1i )}≥0,

where wi , Yi/p(A1i |H1i )p(A2i |H2i )
I Similar weighted misclassification rate

I New ‘margin’ min(A2d2(H2),A1d1(H1))
I Weights ω = Y /p(A1|H1)p(A2|H2)

I Classification estimators (approximately) maximize the
empirical value over d = (d1, d2) in D

I Zhao et al. (2012) employ SVMs
I Zhang et al. (2012) use a genetic algorithm to maximize an

augment version of the empirical value
I Xi et al. (2012) use convex surrogates and an augmented

version of the empirical value
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Classification Estimators, cont’d

I Classification estimators directly target the decision rule

I Loss of prognostic information

I Directly minimizing the empirical value is computationally
difficult

I Replacing indicator with a convex surrogate may lead to
suboptimal solutions unless model space is correct
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Wrap-up

I This is an extremely active area of research

I Tools for estimation and inference exist and are continually
being improved

I There is no panacea, choosing the proper statistical tool
depends critically on the goals of the analysis

I There is help!
I Statisticians on the P01
I UNC-NCSU working group on dynamic treatment regimes
I NCSU personalized medicine cluster
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Workshop Outline

Introduction to Personalized Medicine and Dynamic Treatment
Regimes

Estimation of Optimal Dynamic Treatment Regimes for a Single
Decision

Estimation of Optimal Dynamic Treatment Regimes for Multiple
Decisions

Advanced Topics in Personalized Medicine and Dynamic
Treatment Regimes
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Outline

I Some Illustrative Examples

I Overview of Statistical Issues

I Statistical Learning

I Incorporating Censoring

I Outcome Weighted Learning

I Open Questions

I Preparing Protocols
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Example 1: Non-Small Cell Lung Cancer

In treating advanced non-small cell lung cancer, patients typically
experience two or more lines of treatment.

Possible
treatments

Possible
treatments
and initial
timings

1st-line 2nd-line

Immediate Progression Death

1

Problem of Interest
Can we improve survival by personalizing the treatment at each
decision point (drug at both and timing at second) based on
prognostic data?
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Example 1: Non-Small Cell Lung Cancer

The clinical setting:

I There are two to three lines of therapy, but very few utilize
three, and we will focus on two here.

I We need to make decisions at two treatment times: (1) at the
beginning of the first line and (2) at the end of the first line.

I For time (1), we need to decide which of several agent options
is best: we will only consider two options in the simulation.

I For time (2), we need to decide when to start the second line
(out of three choices for simplicity) and which of two agents
to assign.

I The reward function is overall survival which is right-censored.
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Example 1: Non-Small Cell Lung Cancer

Realistic simulated patients (Zhao, et al., 2011):

I Difference equations used to generate patient trajectories for
two clinical measures: tumor size and quality of life.

I Four distinct subgroups formed with different relationships
between treatment (agents and timing) and measures.

I A SMART trial was simulated using two different drugs at
each decision point and three different timings at the second
point, yielding 12 different treatment pathways.

I Q-learning was used to estimate decision rules based on
treatment history and clinical measures as tailoring variables
and survival time as clinical outcome.

I A Phase III trial comparing the 12 treatment paths with the
estimated optimal individualized decision rules was simulated.
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Example 1: Non-Small Cell Lung Cancer

9.23 10.39 9.04 9.59 10.25 9.12 10.53 11.29 10.31 9.15 9.75 8.90 17.48

Overall Survival

0
5

10
15

20
25

A1A31 A1A32 A1A33 A1A41 A1A42 A1A43 A2A31 A2A32 A2A33 A2A41 A2A42 A2A43 optimal
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Example 1: Non-Small Cell Lung Cancer

Some statistical issues:
I Statistical learning is very useful for handling

I nonlinear structure,
I complex interactions, and
I large numbers of variables.

I Statistical learning tools for censored data are very limited
(almost nonexistent) and appropriate extensions are needed.

I Complex treatment decisions (involving multiple drugs and/or
timing) are new challenges for statistical learning.
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Example 2: Bronchopulmonary Dysplasia in
Infants

The clinical setting:

I Sildenafil has been shown to be effective in preventing
bronchopulmonary dysplasia-associated pulmonary
hypertension in premature infants.

I A crucial open question is what dose to use with which
patients.

I We designed a Phase II dose finding study with the intent of
achieving individualized dosing rules.
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Example 2: Bronchopulmonary Dysplasia in
Infants

Scientific and statistical issues:

I The investigators would like the design to be adaptive so that
ineffective or harmful doses are discarded early.

I A challenge for statistical learning is that dose is a continuous
treatment decision.

I Since the methodology is new and unfamiliar, how do we
frame the design and proposal in a manner that it will satisfy
reviewers and obtain approval?
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Example 3: Cystic Fibrosis

The clinical setting:

I Cystic fibrosis (CF) is a genetic disease.

I The most serious pathogen in CF is Pseudomonas aeruginosa
(Pa).

I Pa lung infections are usually intermittent at first but
eventually chronic, leading to mucoid Pa infection usually in
the late teens, after which lung function decline is precipitous.

I There is a belief that if Pa infections can be eradicated
rapidly, then the mucoid stage can be delayed significantly.

I Our goal is to find the best choice of treatment each time a
patient is infected with CF, beginning at birth, to yield the
longest mucoid-free survival.
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Example 3: Cystic Fibrosis

Realistic simulated patients and trial (Tang, et al., 2012):

I We recruit patients with ages 0–20 years old and follow for
about 2 years for Phase II SMART trial.

I For each episode of Pa infection, we randomize to one of 5
treatments: placebo, AL, AH, BL and BH.

I Which treatments are acceptable depends on patient
prognostic data, including age.

I After SMART trial completion, we use Q-learning for an
“infinite horizon” to estimate optimal, personalized treatment
choice as a function of prognostic values.

I A phase III randomize trial is then conducted to verify
superiority of the personalized treatment compared to fixed,
standard-of-care approaches.
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Example 3: Cystic Fibrosis

Comparison of time-to-mucoid infection between optimal
personalized treatment and fixed treatments from SMART trial:
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Example 3: Cystic Fibrosis

Kaplan-Meier plots from 5 year confirmatory Phase III trial of
optimal versus fixed regimens:
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Example 3: Cystic Fibrosis

Some scientific and statistical issues:

I Construction of primary clinical outcome (utility) as a
composite of several outcomes was highly non-trivial.

I The fact that the disease course is much longer than feasible
clinical trial durations raises clinical trial design and treatment
regime estimation challenges.

I The way we addressed this:
I 2-year SMART Phase II trial with variety of ages.
I 5-year Confirmatory Phase III trial also with variety of ages.
I Careful selection of utility to include short time outcomes

predictive of mucoid PA along as well as mucoid PA.
I Judicious use of an infinite horizon Q-function which was

assumed to be constant across decision times.
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Overview of Statistical Issues

I Complex structure of Q-functions
I Nonlinearity
I Complicated interactions
I High dimensional data

I Complex decision making
I Drug choice
I Timing of treatment
I Dose level

I Censoring

I Clinical trial design challenges
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Statistical Learning

Statistical learning consists of data driven tools for regression,
classification and for other facets of decision making.

Many approaches originated in computer science (artificial
intelligence and machine learning) but have more recently become
part of statistical science (statistical learning).

Examples include:

I Support vector machines (SVM)

I Support vector regression (SVR)

I Random forests

I Reinforcement learning

I Q-learning and A-learning
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Statistical Learning

Advantages

I Good at handling nonlinearity, complicated interactions and
high dimensional data

I Computationally efficient with available software

I Can address prediction issues not covered by regression or
classification

Disadvantages

I Cannot in general handle censoring

I Almost no inference procedures available

I Requires indirect estimation of decision function d(x) through
first estimating Q(x , a) = E (Y |X = x ,A = a) and then
inverting via d̂(x) = argmaxaQ̂(x , a).
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Statistical Learning

Single decision setting

I Powerful statistical learning tools for estimating Q(x , a)
including support vector regression and random forests.

I Ability to handle censoring is almost nonexistent.

I Requires indirect estimation of d(x) via Q(x , a).

Multiple decision setting

I Reinforcement learning enables estimation of decision
functions through Q-functions at each decision point using
either traditional regression (e.g., linear regression) or
statistical learning.

I Censoring and indirect estimation also challenges here.
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Incorporating Censoring

Basic issue
The basic issue is that in estimating Q-functions where the
outcome Y is a failure time, we are interest in a conditional
expectation rather than the more standard hazard function in
survival analysis.

Ad hoc approaches

I Censoring is almost never encountered in computer science
based artificial intelligence approaches.

I One could throw out the censored observations.

I Another approach for SVR is to not penalize if the prediction
is above the censored observation and only penalize if below:
this is better than the above but still has significant bias.
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Incorporating Censoring

Progress for single decision setting:

I Successfully developed new random forest approach for
censored data, “Recursively Imputed Survival Trees” (Zhu and
Kosorok, 2012).

I The above approach is very computationally efficient and
avoids inverse weighting.

I Extended support vector regression to survival data using
inverse probability of censoring weighting (Goldberg and
Kosorok, 2012a).

I The above approach is consistent, with good error rates, and
performs well, but the inverse weighting requires additional
modeling of censoring.
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Incorporating Censoring

Progress for multiple decision setting:

I Ad hoc approach based on decreased penalization for censored
observations performed reasonably well in two-stage
Q-learning for treating non-small cell lung cancer (Zhao, et
al., 2011).

I However, theoretically, the above ad hoc approach can
potentially have unbounded bias.

I Successfully developed Q-learning for right censored data
using inverse probability of censoring weighting (Goldberg and
Kosorok, 2012b).

I The approach is known to be asymptotically unbiased with
good error rates and is computationally reasonable.
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Outcome Weighted Learning

1. Let P denote the distribution of (X ,A,Y ), where treatments
are randomized, and Pd denoted the distribution of (X ,A,Y ),
where treatments are chosen according to d . The value
function of d (Qian & Murphy, 2011) is

V (d) = E d(Y ) =

∫
YdPd =

∫
Y

dPd

dP
dP = E

[
I (A = d(X ))

P(A|X )
Y

]
.

2. Optimal Individualized Treatment Rule:

d∗ ∈ argmaxdV (d).

E (Y |X ,A = 1) > E (Y |X ,A = −1)⇒ d∗(X ) = 1

E (Y |X ,A = 1) < E (Y |X ,A = −1)⇒ d∗(X ) = −1
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Outcome Weighted Learning (OWL)

Optimal Individualized Treatment Rule d∗

Maximize the value Minimize the risk

E

[
I (A = d(X ))

P(A|X )
Y

]
E

[
I (A 6= d(X ))

P(A|X )
Y

]

I For any rule d , d(X ) = sign(f (X )) for some function f .

I Empirical approximation to the risk function:

n−1
n∑

i=1

Yi

P(Ai |Xi )
I (Ai 6= sign(f (Xi ))).

I Computation challenges: non-convexity, discontinuity of loss.
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Outcome Weighted Support Vector Machine

Objective Function: Regularization Framework

min
f

{
1

n

n∑
i=1

Yi

P(Ai |Xi )
φ(Ai f (Xi )) + λn‖f ‖2

}
. (2)

I φ(u) = (1 = u)+ is the hinge loss surrogate, ‖f ‖ is some
norm for f , and λn controls the severity of the penalty on f .

I A linear decision rule: f (X ) = XTβ + β0, with ‖f ‖ as the
Euclidean norm of β.

I Estimated individualized treatment rule:

d̂n = sign(f̂n(X )),

where f̂n is the solution to (2).
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OWL Results

I Fisher consistent and asymptotically consistent.

I Risk bounds and convergence rates similar to those observed
in SVM literature (Tsybakov, 2004).

I Excellent simulation results.

I Promising performance overall (Zhao, et al., 2012a).

I Opens door to application of statistical learning techniques to
personalized medicine.
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OWL: Nefazodone-CBASP Clinical Trial (Keller
et al., 2000)

I 681 patients with non-psychotic chronic major depressive
disorder (MDD).

I Randomized in a 1:1:1 ratio to either nefazodone, cognitive
behavioral-analysis system of psychotherapy (CBASP) or the
combination of nefazodone and psychotherapy.

I Primary outcome: score on the 24-item Hamilton Rating
Scale for Depression (HRSD); the lower the better.

I 50 baseline variables: demographics, psychological problem
diagnostics etc.
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OWL: Nefazodone-CBASP Clinical Trial (Keller
et al., 2000)

Pairwise Comparison:

I OWL: Gaussian kernel.
l1-PLS and OLS: (1,X ,A,XA).

I Value calculated with a 5-fold cross validation type analysis.

Table: Mean HRSD (Lower is Better) from Cross Validation Procedure
with Different Methods

OLS l1-PLS OWL

Nefazodone vs CBASP 15.87 15.95 15.74
Combination vs Nefazodone 11.75 11.28 10.71
Combination vs CBASP 12.22 10.97 10.86
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OWL: Comments

The Outcome Weighted Learning procedure

I Discovers an optimal individualized therapy to improve
expected outcome.

I Nonparametric approach sidesteps the inversion step and
invokes statistical learning techniques directly.

Some open questions:

I How to handle censoring?

I How to generate sample size formulas to enable practical
Phase II design?

I How to handle deciding among more than two treatments?
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OWL for Multiple-Stage Decision Making

Problems with Q learning

I Mismatch exists between estimating the optimal Q function and the
goal of maximizing the value function (Murphy, 2005).

I Non-smooth maximization operation.

I High dimensional covariate space.

Backwards Outcome Weighted Learning (BOWL)

I Generalization of OWL to multi-decision setup (Zhao, et al., 2012b).

I Find the optimal decision rule by directly maximizing the value
function for each stage backwards repeatedly.

I Consistency and risk bound of BOWL estimator.
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BOWL: Simulation Study

Generative Model (Chakraborty et al., 2010)

I X1 ∼ U[−1, 1]50, X2 = X1.

I A1,A2 ∈ {−1, 1},P(A1 = 1) = P(A2 = 1) = 0.5.

I Y1 = 0,Y2|H2,A2 ∼ N(−0.5A1 + 0.5A2 + 0.5A1A2, 1).

I Training data sample size n = 100, 200, 400.

I Testing data sample size 10000.

I 500 replications.

I Methods: BOWL with Linear kernel; Q learning with linear
regression.
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BOWL: Simulation Results
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Note: Q learning encounters difficulties with small sample sizes.
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Open Questions for OWL and BOWL

I Survival outcomes
I Multicategory/Continuous treatments.

I Multiple therapies.
I Continuous range of dose levels.

I Optimize timing to switch treatments in multi-stage trials.

Possible
treatments

Possible
treatments
and initial
timings

1st-line 2nd-line

Immediate Progression Death

1
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Other Open Questions

I Development of meaningful inference tools: this is hard even
for linear regression in Q-learning.

I Develop sample size algorithms or formulas.

I When should parametric or semiparametric approaches be
used instead of machine learning approaches?

I How to design trials for long-term chronic diseases.

I How to elicit and formulate outcomes (utility).

I How to handle continuing reassessment so that previously
developed regimes could be enlarged to include new and
emerging treatments.
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Preparing Protocols

I Each setting seems to be unique.

I Often best to frame the trial first as a traditional trial with
randomized treatments and then add personalized medicine
and dynamic treatment regime aspect as later aims.

I There are ways to frame dynamic treatment regime
estimation, in some cases, as weighted linear regression.

I Sample sizes roughly correspond to large traditional Phase II
(or small Phase III) designs for SMART trials.

I We are working on sample size software for OWL studies.

I We have completed or are working on about 5 such trials.
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