Atherosclerosis Risk in Communities Study Protocol

- .

1-

ł

Manual 5

Electrocardiography

.

Visit 4

Version 4.0

September 1997

For Copies, Please Contact ARIC Coordinating Center Department of Biostatistics (CSCC) University of North Carolina CB# 8030, Suite 203, NationsBank Plaza 137 E. Franklin Street Chapel Hill, NC 27514

FOREWORD

This manual, entitled <u>Electrocardiography</u>, is one of a series of protocols and manuals of operation for the Atherosclerosis Risk in Communities (ARIC) Study. The complexity of the ARIC Study requires that a sizeable number of procedures be described, thus this rather extensive list of materials has been organized into the set of manuals listed below. Manual 1 provides the background, organization, and general objectives of the ARIC Study. Manuals 2 and 3 describe the operation of the Cohort and Surveillance Components of the study. Detailed Manuals of Operation for specific procedures, including those of reading centers and central laboratories, make up Manuals 4 through 11 and 13 through 16. Manual 12 on Quality Assurance contains a general description of the study's approach to quality assurance as well as the details for quality control for the different study procedures.

ARIC Study Protocols and Manuals of Operation

MANUAL

TITLE

1	General Description and Study Management
2	Cohort Component Procedures
3	Cohort and Community Surveillance
4	Pulmonary Function Assessment - (Retired)
⁵	Electrocardiography
6	Ultrasound Assessment
7	Blood Collection and Processing
8	Lipid and Lipoprotein Determinations
9	Hemostasis Determinations
10	Clinical Chemistry Determinations - (Retired)
11	Sitting Blood Pressure
12	Quality Assurance and Quality Control
13	Magnetic Resonance Imaging
14	Retinal Photography
15	Echocardiography
16	DNA Repository

Manual 5. Electrocardiography

TABLE OF CONTENTS

List o	of Figu	ures
Prefac	:e	••••••••••••••••••••••••••••••••••••••
1.	VISIT	3 ECGs
	1.1	Introduction
	1.2	Procedures for Recording ECGs
	1.3	Electrode Position Measuring and Marking 1
	1.4	Skin Preparation
	1.5	Application of Electrodes
	1.6	Recording the 12-Lead ECG
	1.7	Fault Detection Procedures
	1.8	Self-Evaluation of Technical Performance
	1.9	Original Hard Copy Record
	1.10	Transmission, Confirmation and Deletion
2	CENTE	
4	2 1	Pesting 12-load ECG
	2.1	Vigit mbroe ECC
	2.2	VISIC INFEE ECGS
	2.5	
	2.4	
з.	QUALI	TY CONTROL
	3.1	The 12-Lead ECG
	3.2	Cohort Hospital ECGs
	3.3	Surveillance Hospital ECGs
	3.4	Data Acquisition
	3.5	Training and Certification
4.	REFER	ENCES
5.	APPEN	DICES
	Appen	dix A. Marquette MAC PC Setup
	Appen	dix B. MAC PC Entry Information Needed for Each Participant . A-11
	Appen	dix C. Figure 11. Typical Electrocardiogram Using MAC PC A-13
	Appen	dix D. Editing Participant Information on a MAC PC A-14
	Appen	dix E. Minnesota Code 1982
	Appen	dix F. Performance Grade Levels
	Appen	dix G. EPICARE ECG Reading Center Data Record
	Appen	dix H. ARIC ECG (EPICARE Full) Report Record Format A-25
	Appen	dix I. Computer to Visual Code Correspondence A-32
	Appen	dix J. Abstract: Electrocardiographic Model for Prediction
		of Left Ventricular Mass
	Appen	dix K. Cardiac Infarction Injury Score: An
	••	Electrocardiographic Coding Schema for Ischemic Heart
		Disease. Rautahariu, PM et al
	Appen	dix L. Myocardial Infarction Injury Score. Rautahariu. PM A-45
	Appen	dix M. ARIC Cohort 12 Lead Resting ECG Coding Form
	Appen	dix N. Comparison Rules for Simultaneously Evaluating ECGs A-53
	Appen	dix O. ARIC Minnesota Coding and Serial Changes Form-Field Center
		Visit ECGs

Appendix P. Prototype-ARIC Hospital Surveillance ECG A-57 . . Appendix Q. ECG Technician Procedure Review Form A-58 Appendix R. ARIC ECG Certification A-61 . . . Appendix T. Definitions of Electrocardiographic Criteria A-65

ARIC PROTOCOL 5. Electrocardiography - Visit 4 VERSION 4.0 09/97

Manual 5. Electrocardiography

List of Figures

Figure 1.	Electrode and Leadwire Placement	•	2
Figure:2.	Location of V6 Electrode Using the Dal-Square	•	4
Figure 3.	The Mac PC Keyboard and LCD Display by Marquette Electronics	•	6
Figure 4.	Right Arm/Left Arm Lead Switch		8
Figure 5.	Unacceptable Noise Level	•	8
Figure 6.	Unacceptable Overall Baseline Drift	•	9
Figure 7.	Unacceptable Beat-to-Beat Baseline Drift	•	9
Figure 8.	Sixty-Cycle Interference	•	10
Figure 9.	Artifact Caused by Muscle Tremor	•	10
Figure 10.	MAC PC Storage Directory	•	12
Figure 11.	Typical Electrocardiogram Using MAC PC	A-	13

iii

.

PREFACE

Electrocardiograms (ECGs) are coded for ARIC cohort participants and for hospital surveillance cases.

Three different categories of resting ECGs are being collected in the cohort component of the ARIC study.

1. <u>Standard and two-minute rhythm strip ECGs for every participant at</u> baseline visit

To determine ECG status of each participant at baseline and provide predictive data for future subgroup analysis.

2. <u>Standard ECG for every participant at each follow-up visit</u>

To determine changing ECG status in regard to myocardial ischemia, left ventricular hypertrophy, and conduction delays for each participant.

3. Hospital ECGs for participants hospitalized after their baseline visit

To determine if a myocardial infarction has occurred.

ECGs, from baseline and follow-up visits, for all participants are sent by phone modem to be analyzed by computer at the ARIC machine-coded ECG Computing Center at the Bowman-Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina (EPICARE). Wave voltage and duration measurements are taken (including U-wave measurement and the Dalhousie multivariable score for left ventricular mass, Appendix I) as well as implementation of the Minnesota Code (1) (Appendix M) and the Major Cardiac Injury Score (2) (Appendix K). All records with significant Minnesota Code findings by the computer, as well as a random sample, are adjudicated at the Minnesota ECG Coding Center in Minneapolis. Paper records are generated and coded by the Minnesota ECG Coding Center.

1. VISIT 3 ECGs

1.1 Introduction

At each follow-up visit, a standard supine 12-lead resting ECG is recorded after a 12-hour fast followed by a light snack and at least one hour after smoking or ingestion of caffeine.

1.2 Procedures for Recording ECGs

The standard electrocardiograph for the ARIC study is the MAC PC Personal Cardiography by Marquette Electronics, Inc. The standard configuration for the MAC PC is shown in Appendix A. A 12-lead resting ECG tracing is obtained consisting of 10 seconds of each of the leads simultaneously (I, II, III, aVR, aVL, aVF, V1-V6).

Procedures for charging the battery of the MAC PC: The MAC PC runs only from its battery. The machine may be used with the battery or plugged into a wall outlet. The machine must be plugged into an outlet to charge every day after transmitting data to EPICARE. It holds and stores about 14 ECGs. The amount of charge left is displayed for one-half second when the machine is turned on.

If the unit is left unplugged, it will completely drain and will delete stored ECGs. Leave plugged in over weekends and holidays.

1.3 Electrode Position Measuring and Marking

Because it is essential for the study to be able to compare baseline ECG data with subsequent records, a uniform procedure for electrode placement and skin preparation is required. The method and procedure for standardizing electrode locations are outlined below.

The participant, chest bared, is instructed to lie on the recording bed with arms relaxed at the sides. The individual is asked to avoid movements which may cause errors in marking the electrode locations, but encouraged to converse with the technician. Prior experience with electrocardiograms is discussed, as is the purpose of the ECG recording. The participant should be told this is a research ECG to be used for statistical analysis later in the study. However, it can also be used by the clinic physician for general diagnostic purposes, and a copy can be sent to the individual's private physician.

For best electrode/skin interface, place the electrodes on the skin at least 2-3 minutes before taking the ECG. Patient information can be entered on the MAC PC during this time.

A good felt tip pen is used to mark the six chest electrode positions. Wipe the general area of the following 10 electrode sites with a sterile alcohol prep to remove skin oil and perspiration. It is extremely important that care be taken to locate these positions accurately. Therefore, the procedure given below must be meticulously followed. Electrode positions in women with large,

1

pendulous breasts must be determined in relation to the anatomic points described below - as for all participants. The electrodes must then be placed on top of the breast (in the correct position).

1.3.1 Limb Leads

Locate electrode LL on the left ankle (inside). Locate electrode RL on the right ankle (inside). Locate electrode LA on the left wrist (inside). Locate electrode RA on the right wrist (inside).

Figure 1. Electrode and Leadwire Placement

1.3.2 Electrode V2

Locate the sternal angle and second left rib between the index and middle fingers of your right hand. Count down to the fourth rib and identify the fourth intercostal space below it. Locate V2 in the fourth intercostal space immediately to the left of the sternal border.

1.3.3 Electrode V1

Locate electrode V1 in the fourth intercostal space at the right sternal border. This should be at the same level as V2 and immediately to the right of the sternum.

1.3.4 Anterior 5th Interspace Marker (E Point)

Identify the fifth rib and fifth intercostal space below V2 by counting down ribs as described for V2. Follow this space horizontally to the midsternal line and mark this point. This is the "E" point.

2

1.3.5 Electrode V6

With the chest square held lightly against the body (see Figure 2) locate the V6 electrode at the same level as the E point in the midaxillary line (straight down from the center of the armpit). If breast tissue is over the V6 area, mark the V6 location on the breast.

Do not attempt to move the breast in order to mark V6 on the chest wall.

1.3.5.1 Chest size measurements

Place the Chest Square firmly on the lower sternum at location E and at location V6. Verify that the arms of the square are exactly horizontal and vertical in the horizontal plane of the thorax. Move the square so that the vertical arm at V6 is firmly against the ribcage.

Now read the distance OE and the distance OV6 to the nearest 0.5 cm. Write them down on scratch paper.

Record the OV6 measurement under height and the OE measurement under weight. Measure to the nearest 0.5 cm. and round up.

- e.g. 11.25 cm. would be 11.5 cm. 11.75 cm. would be 12.0 cm.
- Enter 3 digits into the Mac PC but do <u>not</u> enter decimal point. e.g. 11.5 cm. enter as 115 11 cm. enter as 110
- Use leading zeros. e.g. 9.5 cm. enter as 095

1.3.6 Electrode V4

Electrode V4 is located using the E-V6 Halfpoint Method (3). Using a medical tape measure (American Hospital Supply, Cat. No. 30940), measure the distance between the E point and the V6 marking. The tape should be resting lightly on the skin, not pressing into the flesh. The E and V6 marks should clearly be seen above the tape. Without moving the tape, mark the location of electrode V4 midway between E and V6.

1.3.7 Electrode V3

Using a flexible ruler, mark the location of electrode V3 midway between the locations of V2 and V4.

1.3.8 Electrode V5

Using a flexible ruler, mark the location of electrode V5 midway between the locations of V4 and V6.

Figure 2. Location of V6 Electrode Using the Dal-Square

4

1.4 Skin Preparation

Prepare the skin for applying electrodes by wiping with alcohol, then briskly with a gauze pad. If technical problems are observed due to poor electrode contact, it is necessary to do further preparation as described below:

- 1. With the participant's consent, remove any excess hair from each electrode site on the chest and legs using an electric shaver.
- 2. At each electrode location in turn, the outer horny layer of the epidermis is removed by gentle dermal abrasion with a piece of 6-0 (220) sandpaper. Only three passes (in the form of an asterisk) at each site using light pressure are required.

If the skin preparation has removed the felt pen marking at any of the electrode sites, these are accurately re-established by carefully repeating the procedure described in Electrode Position Measuring and Marking. It is important that the electrode sites be marked using the exact technique described.

1.5 Application of Electrodes

Disposable electrodes are used in the ARIC study. Adaptors are used with the leadwires to connect the "banana" plug from the MAC PC leadwire to the disposable electrode via a clip.

When placing each electrode, massage it in a small circular motion to maximize the pre-gel contact with the skin but avoid overlap of gel from one electrode to the next.

Center the four limb electrodes on the inside of the wrist or ankle with the tab for the clip pointing toward the head. Center the six chest electrodes on the chest markings with the tabs pointing down. Do not let the electrodes overlap or touch each other if possible.

Clip the appropriate leadwire to each electrode (Figure 1). Do not pull or jerk tangled wires. To untangle wires, disconnect lead wires from electrodes.

1.6 Recording the 12-lead ECG

<u>Change the roll of paper as needed</u>. Each roll is 75 feet long; each ECG is automatically stored in memory until it is deleted.

After placing the electrodes on the skin, enter the participant information into the MAC PC (Figure 3) according to Appendix B. Electrodes must be on the skin for at least 2-3 minutes before taking the ECG. Make a final check of the electrodes and lead wires. Ask the participant to relax and keep still, then press the RECORD key.

The machine will display "Acquiring Data" and the left side of the display will show a count. If there are technical problems the display will show which lead is involved and will keep counting until it gets 10 seconds of good data. Check electrode contacts and leadwires, then check the display again. If the display counts past 45, push the STOP key and remove the electrodes on limbs first. Prepare the electrode sites as discussed in Skin Preparation and follow the above protocol for exact relocation of electrodes. Press RECORD ECG. The machine will tell you to "enter a new patient or press RECORD." Press RECORD ECG a second time to start the ECG.

The machine will automatically print the ECG after it has acquired 10 seconds of good data (Appendix C).

Tear the ECG off the machine and file it in your records. Make a copy by pressing "up" arrows with Fl. Press Fl under storage, again press Fl under plot. Choose the desired tracing. Press F5 - enter - then print. A copy can be printed from the machine's memory any time before deletion of the ECG.

Figure 3. The MAC PC Keyboard and LCD Display by Marquette Electronics, Inc.

1.7 Fault Detection Procedures

Should problems with noise or drift be encountered, electrodes are replaced. The following is a guide for determining which electrodes may be faulty. The underlined electrodes are the predominant determinants of the appropriate lead and therefore are most likely to be the faulty electrodes for a given lead. After adjustment or replacement of suspect electrodes, the electrocardiograph should be able to record 10 seconds of good data.

Lead Affected	Possible Faulty Electrode
I	RL, RA, LA
II	RL, RA, LL
III	RL, LA, LL
aVR	RL, RA, LL, LA
aVL	RL, LL, RA, LA
aVF	RL , LL , RA , \overline{LA}
Vl	RL, LL, RA, LA, V1
V2	RL, LL, RA, LA, $\overline{V2}$

6

V3	RL,	LL,	RA,	LA,	<u>v3</u>
V4	RL,	LL,	RA,	LA,	V4
V5	RL,	LL,	RA,	LA,	<u>v5</u>
V6	RL,	LL,	RA,	LA,	<u>v6</u>

1.8 Self-Evaluation of Technical Performance

This section allows technicians to monitor their own ECG technique. It is intended to help technicians who are having difficulty meeting the quality standards set by the ECG Reading Center. These data are not intended to be collected by the study.

The technician examines the ECG tracing to estimate the noise level and baseline drift. Based on the requirements of the Minnesota Code, acceptable and unacceptable levels of noise and baseline drift have been established. These levels are scored using the following table:

Quality Grade	Noise (mm)	Overall Drift (mm)	Beat-to-beat Drift (mm)
1	< .25	< 1	< 1
2	< .50	< 2	< 1.5
3	< 1	< 3	< 2
4	< 2	< 4	< 3
5	<u>></u> 2	> 4	<u>></u> 3

The grade levels given in this table are related to the ability of the analysis program to achieve the required accuracy. <u>Quality Grade 5 is</u> <u>unacceptable</u>. ECGs of Quality Grade 5 must be deleted from the machine's memory and retaken immediately.

 First, the tracing is examined for obvious errors such as right arm/left arm and other common lead misplacements (see Figure 4, negative p-waves in I indicate lead switch). These ECGs must be deleted from the machine's memory and retaken immediately.

Figure 4. Right Arm/Left Arm Lead Switch

2. The Quality Grade for noise is obtained by measuring the noise level as vertical peak-to-peak values in terms of number of small paper divisions (smallest grid squares). Note that recording sensitivity is 1 mv per centimeter, (one small paper division = 1 mm = 0.1 mv). A noise level of more than 2 small paper divisions (> 0.2 mv peak to peak) is unacceptable (Figure 5).

|--|

Figure 5. Unacceptable Noise Level

The Quality Grade for overall drift is obtained by searching each of the 12-leads for the maximum and minimum baseline levels within that lead (as determined by the PR and/or TP segments) over the 10 second recording and measuring the vertical distance between them. A distance of more than 4 small paper divisions is unacceptable (Figure 6).

							<u>u l</u>	Ш					1111		<u> HUU</u>	li 🖌
同期	11.0	lih in	lii: ii!										414			11
		1.					IV.	5	Шŀ				700	Ū.		JD)
						100	ilii.	訪问	i i i	HR H		186	151	i i i		111
	-	1-1-1				111		ii ii f			173	1. 1.	11			Ti T
A	- <u></u>		J				H. H	r HE	14					۱H	7	
finite initia		μΨ	74-			11	<u>.</u>		19			<u>; </u>	14	····	-45	F
					<u>li:</u>]]].	<u>. julii</u>	<u>Ui:1</u>	hiilui	1.41		ήÇ.	2	199			11
			1.111				UL II		li II			. ii				111
						THE	n filli			H. D.						П
100.55	1 11			T T	11. II	1000	561	STE	il il						1111	Πī
						1026		111	iiiii	l ili	1.0.		11	l Til	iil.	itti
acancan	111111	1: 111-1:	mana	110:464	لتلالالا	1000	:0:00	1.1100	30B	w_{100}	<u></u>			CHU:	100.00	101

3.

Figure 6. Unacceptable Overall Baseline Drift

4. The Quality Grade for beat-to-beat drift is determined by searching for the pair of successive QRS complexes having the largest amplitude difference (vertical distance) between successive PR segments. A difference of more than 3 small paper divisions (> 0.3 mv) indicates an unacceptable record (Figure 7).

erenker eren og er a for erfe rningerennennennen er er at eren er at eren er bed e n breder b.

Figure 7. Unacceptable Beat-to-Beat Baseline Drift

Improvement in technical quality will indeed result if the prescribed procedure for electrode position marking, electrode and skin preparation, electrode replacement and equipment use are carefully followed. Baseline drift problems, which are essentially caused by poor electrode-skin contact are particularly easy to remedy, as is 60-cycle interference.

<u>Sixty-cycle interference</u> is characterized by perfectly regular fine oscillations occurring at the rate of sixty per second (Figure 8).

Electrical equipment of any kind may be the source of AC interference on an ECG in all leads or only certain ones. Check quality of skin preparation and electrode contact. Check leadwires and resecure attachment of the alligator clip to the electrode. Make sure participant does not touch any metal part of the bed or other equipment. Proximity to a wall with hidden wiring or a partially broken cable may also cause this problem.

9

Figure 8. Sixty-Cycle Interference

<u>Muscle Tremor</u> causes irregular oscillations of low amplitude and varying rapidity superimposed upon the ECG waveform (Figure 9). Muscle tremor is the involuntary muscle activity of a participant whose state is tense, apprehensive, or uncomfortable. This is why a clear explanation of the electrocardiogram test and reassurance are necessary for the participant. The participant is asked if the temperature of the room is too low for her/him and is covered with a blanket if so.

						جنب ر معد ب	<u>,</u>				
								======			ne ja se l
			-1							=====	
		 · · · · · · · · · · · · · · · · · · ·									<u> </u>
					==						
					-					===	
	三三	e and a start		1	1	ببنيجا	mili				
			1								<u> </u>
······································									172127		3-1:4

Figure 9. Artifact Caused by Muscle Tremor

1.9 Original Hard Copy Record

The original 12-lead ECG record is filed at the field center, and is read locally by clinic physicians for notification and referral if needed. The records are then placed in participants' local data files. Double-check that the participant is correctly identified.

1.10 Transmission, Confirmation and Deletion

1.10.1 Transmission

The memory of the electrocardiograph will store 11 to 14 12-lead ECGs. The machine will not store another ECG if the memory is full when an ECG is taken. The machine will ask you to delete an ECG from memory or delete the one just taken. For this reason, ECGs must be transmitted to EPICARE every day and deleted the next day after confirmation.

The receiving unit at EPICARE is usually in the "ready" state to receive ECGs. If you get a "no connection" message when trying to send ECGs, try again in 10-20 minutes. If there continues to be problems with transmitting to EPICARE, ECGs can be transmitted to the MAC 12 at the Minneapolis ECG Coding Center. Call the Coding Center supervisor at (612) 626-9680 to arrange transmission.

- 1. The phone number for the EPICARE receiving port (910) 716-0837 is already programmed in the set-up menu of the electrocardiograph.
- Make sure the phone line is connected. This can be done by moving the jack from your regular phone to the port in the back of the MAC PC.
- Print one copy of the directory of ECGs in memory (see Figure 10). To do this:
 - a) From the Main Menu press the shift and F1 simultaneously to show the system functions display.
 - b) Press the Storage (F1) key to display the storage functions display.
 - c) Press the directory (F2) key and a directory will be printed.

4. On the directory, put an asterisk by the IDs taken that day which are to be transmitted (see Figure 10).

5. To complete transmission:

. .

- a) From the Main Menu press the shift and F1 keys simultaneously to show the system functions display.
- b) Press the Storage (F1) key to display the storage functions display.
- c) Press the More (F5) key to show the second Storage Functions display.
- d) Press the Transmit (F1) key to show the transmission type display.
- e) Press the phone (F1) key. (The EPICARE phone number will show on the display and should not need to be re-entered). Press ENTER.
- f) Patient data for the first ECG in memory will be displayed.
- g) If that ID had already been transmitted earlier, press NO (F2). If the ECG is to be transmitted press YES (F1).
- h) Each ID on the directory will be displayed. Press NO or YES for each one, referring to the printed directory. Note in Figure 10 that ID #J102402 has two different ECGs in the machine's memory. This would occur if the technician noticed poor quality in the first ECG, and took a second one without deleting the first. Make sure to immediately delete tracings that are of poor quality. In doing so, all tracings not previously sent can be transmitted each time.

HAC-PC Store D: D: 000102479 000102376 000102376 000102372 000102402 0001000 000100000 0000000000000000	BC Directory: 1 Name 1 HESS. J102479 PRIN. J102517 ANDE. J102376 CROS. J102372 JONE. J109087, SHIT. J102402 SHIT. J102402 BUCK. J109127, A12 Used 593	3-JAN-87 4:38	t. JAN-87 14:25 EC -JAN-87 14:25 EC -JAN-87 14:31 EC -JAN-87 14:32 EC -JAN-87 14:33 EC -JAN-87 14:35 EC -JAN-87 14:35 EC -JAN-87 14:35 EC -JAN-87 14:35 EC -JAN-87 14:35 EC -JAN-87 14:35 EC	Image U/C Car: Lee G U 006 001 G U 006 001	Site Room Size DO6 36 57 006 36 57 006 36 57 006 41 57 006 41 57 006 41 57 006 36 57 006 36 57 006 36 57 006 36 57 006 36 57 006 36 57	
---	---	---------------	--	--	--	--

Figure 10. MAC PC Storage Directory

- i) The machine will dial the phone and transmit each ECG.
- j) Watch the display as each ECG is transmitted and check the IDs on the Directory List. This way if a problem occurs, the ECG involved can be identified.
- k) After the last ECG to be transmitted is displayed, a message indicating the number of ECGs that were transmitted vs. the number you selected to transmit is displayed. If the numbers are not the same, the problem ECGs will have been identified on the Directory List. These can be re-transmitted using the above steps.
- 1) Keep the Directory List available for confirmation from EPICARE via electronic mail the next morning.

1.10.2 Confirmation

Every morning the ECG Reading Center (EPICARE) notifies each field center of the IDs received. Notification is by ARIC electronic mail directly to the field center's personal computer. The mailing includes the ID, date and time of each ECG received on the previous evening.

Compare the Directory List with the IDs of the mailing. If there is a notice of invalid ID tracing on the E-mail confirmation, it must be corrected and retransmitted before deletion. See Appendix D.

If there is an ID on the Directory (which had been marked for transmission) that is not on the confirmation mailing, retransmit that ID immediately. If there is an ID on the confirmation mailing that is not on your Directory List, notify EPICARE of this through ARIC electronic mail.

Note: Confirmation of transmission from EPICARE has nothing to do with the confirmed/unconfirmed report settings in the MAC PC.

1.10.3 Deletion

To delete ECGs that have been received by EPICARE:

- 1. From the Main Menu press the shift and F1 simultaneously to show the system functions display.
- 2. Press the Storage (F1) key to display the storage functions display.
- 3. Press the Delete (F4) key.
- 4. Patient data for the first ECG in memory will be displayed.
- 5. If confirmation from EPICARE has been received, press the Delete (F1) key, otherwise press the save (F2) key.
- 6. Each ECG in the Directory will be displayed. Press Delete or Save for each one.
- 7. The machine will count the ECGs and the display will ask if you really want to delete them. If you are sure you have selected only ECGs confirmed by EPICARE and/or bad quality ECGs, press Yes (F1), otherwise press No (F2) and start over.
- 8. You may also press Quit (F4) while any ID is being displayed if you have made a mistake and nothing will be deleted.

2. CENTRAL ECG READING FOLLOW-UP ECGS

2.1 Resting 12-lead ECG

Reading of 12-lead ECGs by the ECG Computer Center includes the Minnesota Code (1) (Appendix E) and the Performance Grade Level (Appendix F). Every other week EPICARE sends these data for the ECGs received to the Coordinating Center on diskette (Appendix G). Wave voltage and duration measurements also taken are detailed in Appendix H and include U-wave measurement, the Dalhousie score for left ventricular mass (Appendix J), and the Cardiac Infarction Injury Score (2) (Appendix K).

All resting 12-lead ECG records with computer-generated ECG findings listed below, which qualify for serial change coding at follow-up visits, and at least a 10% random sample of the remaining ECGs are visually coded at the Minnesota Coding Center by the Minnesota Code. ECGs are read two times, blinded: discrepancies are adjudicated by a senior coder. Minnesota Code criteria are in Appendix E. Results are recorded on computer on an ARIC Cohort 12-lead Resting ECG form (Appendix M). Periodically, all records created or modified since the previous shipment date are reformatted in conformity with the ARIC Data Transfer Standard and transferred to the Coordinating Center via CC mail. Correspondence between visual Minnesota codes and computer codes is in Appendix I. The computer ECG codes which require visual coding include:

any 1-code,
 any 4-1, 4-2, 5-1 or 5-2 code,
 any 9-2, 6-4, 7-1-1, 7-2-1, or 7-4 code.
 any 6-1, 6-8, or Heart Rate > 140

2.1.1 Adjudication

The visual Minnesota Codes are sent to the Coordinating Center for data comparison with the computer-generated codes. Adjudication between the visual code and the computer code is performed only on ECGs that have a discrepancy involving any Q-code, any ST or T wave changes $(4-1, 4-2, 5-1, 5-2 \text{ or } 9-2), 7-1-1, 7-2-1, 7-4, 6-1, 6-4, 6-8, or Heart Rate <math>\geq 140$. The Coordinating Center determines the IDs that have any of these discrepancies and sends a report form to the Minnesota Coding Center listing the ID, acrostic, date and time of ECG, the visual codes and the computer codes. These ECGs are examined and the adjudicated codes are entered into an adjudication record that is sent to the Coordinating Center. The Coordinating Center adds the adjudicated codes to the data base as the definitive Minnesota Codes for the IDs involved.

2.1.2 Criteria for Agreement

The EPICARE and Minneapolis ECG records will be considered to be in agreement only if they meet the standards for substantial agreement in their coding of each lead group for Q-waves, ST-depression, and T-waves.

14

O-codes: The two centers will be considered in substantial agreement if within each lead group, Both centers assign 1-1-x codes. 1. Both centers assign 1-2-x codes (except 1-2-8 or 1-2-6). 2. 3. Both centers assign 1-3-x codes (or 1-2-8). .: 4. Both centers assign no Q-code (or 1-2-6). ST-depression: Agree if within each lead group, both code 4-1-x (either 4-1-1 or 4-1-2) or if both code 4-2, or if both have any other code or no code **T-waves:** Agree if within each lead group both code 5-1, or both code 5-2, or both have any other code or no code. ST-elevation: Agree if within each lead group both code 9-2 or both code no 9-2 code. Bundle branch Block: Agreement if both have assigned code 7-1-1 or both have assigned 7-2-1 or both assigned 7-4, or both centers have assigned no 7-1-1 code, 7-2-1, or 7-4 code, or any other 7 code or no code. Wolf-Parkinson-White, Complete AV Block, or Artifical Pacemaker: Agreement if both assigned code 6-4, 6-1, or 6-8, respectively, or both assigned no 6-code or any other 6 code. Heart rate > 140: Agree if both centers assign heart rate <140. [If either center assigns a heart rate ≥140, the ECG must be adjudicated] 2.1.3 Study Data The computer assigned codes will be used as Study Data in all cases except where adjudication results in a code different from the original EPICARE code. If the two centers disagree on "minor" codes (i.e., codes other than those listed above), the EPICARE reading prevails. Only for "major" codes

In some cases this composite coding may result in incompatible codes from the combined computer plus visual record. When incompatible codes exist, the visual Minnesota codes are the final study data.

does the adjudicated reading prevail. Note that the adjudicated code could

2.2 Visit Three and Four ECGs

disagree with both initial codes.

Follow-up visit procedures are the same as for baseline ECGs with the exception that baseline and follow-up ECGs are compared and two-minute rhythm strips are omitted. The procedure for this comparison is as follows.

When two (adjudicated) ECGs from different field center visits are available, a determination is made at the Coordinating Center as to whether or not Minnesota Code change criteria are met. Determination is made by computer algorithm, not by Minnesota Coders. IDs that fit the change criteria (i.e., any pattern ED1 through ED7, see Appendix T) are examined side by side for serial ECG change at the Minnesota ECG Reading center. Simultaneous ECG comparison is based on the final Minnesota codes. Serial ECG changes (significant increase, no increase or technical problem) are determined (Appendix O). Serial Change criteria are in Appendix N. These objective rules for side-by-side ECG evaluation are used to determine whether a Minnesota code change between ECG pairs is significant. The simultaneous ECG evaluation procedure uses the first clinic visit ECG as the reference ECG for comparison.

ARIC requires a Minnesota Code change plus agreement by simultaneous ECG comparison before declaring that the ECG pattern change meets ARIC ECG criteria for interim MI (see Appendix T).

A determination that an ARIC participant has had an MI, either prior to the initial clinic visit or between visits, can be made on ECG evidence alone, using the following criteria:

OR

1. Prevalent MI at Baseline

Baseline ECG (initial cohort visit) coded:

- a) any 1-1-X code AND (no 7-1-1 or 7-4)
- b) any 1-2-X (except 1-2-6 or 1-2-8) PLUS (4-1-1 or 4-1-2 or 4-2 or 5-1 or 5-2) AND (no 7-1-1 or 7-4).
- 2. Interim MI Between Cohort Visits
 - a) An Evolving Diagnostic ECG Pattern (ED1 through ED7) between the baseline ECG (initial cohort visit) and an ECG from a later cohort visit confirmed by simultaneous ECG comparison.
 - OR
 - b) An MI pattern as detected by NOVACODE (Appendix L), with visual conformation, between the baseline ECG and an ECG from a later cohort visit.

This latter definition b) was added because the computer ECG Center's NOVACODE criteria have proved more sensitive but less specific for ECG myocardial infarction. Possible myocardial infarctions by NOVACODE that do not also meet criterion a) are read by the visual Minnesota Coding Center director to determine whether or not the ECG indeed shows evidence of myocardial infarction.

2.3 Hospital ECGs for Cohort

Whenever hospital ECGs for cohort participants are obtained after the baseline examination, photocopies of these records (masked at the field center for all information except ID) are sent to the Coding Center and coded by the Minnesota Code. ECGs are read two times, blinded:

disagreements are adjudicated by a senior coder. Minnesota Code criteria are in Appendix E.

ECGs that fit the change criteria (i.e., any pattern ED1 through ED7 or EV1 through EV8) are examined side by side for Serial ECG change. Simultaneous ECG comparison is performed by two senior coders on the final Minnesota codes using the first ECG of the hospitalization as the reference. Serial change categories are: significant increase, decrease (but not for Q-codes), no change (this implies no increase for Q-codes) or technical problem (Appendix O). Serial Change criteria are in Appendix N. These objective rules for side-by-side ECG evaluation are used to determine whether a Minnesota code change between ECG pairs is significant.

As an example, the ARIC protocol defines a new Minnesota code 1-2-7 as a potential ischemic event. Persons with this severity of ECG change will have simultaneous ECG comparison. The ECG comparison procedure (for this case) requires a \geq 1mm R-wave amplitude decrease between corresponding leads of the reference and comparison ECGs. The criteria for 1-2-7 are QS patterns in V1, V2, and V3. If the reference ECG has R-waves on average that are \geq 1mm tall in V3, then the R-waves in the following ECG have to decrease the appropriate amount (at least 1mm). A "significant increase" is recorded. If the reference ECG has R-waves < 1mm tall in V3, it cannot fulfill the change criteria and "no change" is noted (see Appendix U).

ARIC requires a Minnesota Code 'trigger' plus agreement by simultaneous ECG comparison before declaring that the ECG pattern change meets ARIC criteria for an evolving ECG diagnostic pattern.

The ECGs are filed by ID at the Coding Center.

2.4 Community Surveillance ECGs

Up to three Surveillance hospital ECGs are photocopied by abstractors and mailed to the Minneapolis ECG Reading Center. As described in Manual 3, abstractors select the first codable ECG recorded after admission, the last codable ECG before discharge, and the last codable ECG recorded on day three after admission or after an in-hospital event.

Minnesota coding is performed for Surveillance ECGs, with the exception of the following codes: 6-3; 6-5; 7-3; 7-5; 9-4; 8-1; 8-3; 8-5; 8-6; 8-7; 8-8; and 8-9. Coding is done once by an experienced coder with no adjudication. No serial change rules are applied.

For analysis of evolving Q-waves, Minnesota Q codes are translated by computer algorithm into categories as shown in Appendix P.

17

- 18
- 3. QUALITY CONTROL

3.1 The 12-lead ECG

- 3.1.1 Technician
- 1. All ECG technicians must be certified. See the following section on Training and Certification.
- 2. Study guidelines on "acceptable" noise levels are given earlier in this protocol under Self-Evaluation of Technical Performance.
- 3. Each technician must take an average of 3 ECGs per week over a twomonth period to remain familiar with procedures and equipment.
- 4. Each technician is observed quarterly by the most senior certified technician while taking a participant's ECG. The observer checks whether or not each procedure is performed (Appendix R) and makes comments on the sheet if necessary. After the ECG is taken, the observer discusses the Procedure Review with the technician, then sends it to the Coordinating Center.
- 3.1.2 Field Center
- 1. Each ECG is checked for quality of data at EPICARE.
- 2. The technician number and Performance Grade Level (Appendix F) of each ECG is included in the data file that is sent to the Coordinating Center each month.
- 3. The Coordinating Center reports these findings to the Field Centers.
- 4. Each MAC PC is calibrated quarterly. Procedures are in Appendix S.
- 3.1.3 EPICARE ECG Computer Center
- The ECG Coding Center will establish a test file containing approximately 25 ECGs from each field center, for a total of 100, enriched as to ECG abnormality. This file will be established in collaboration with the Coordinating Center.
- 2. Every other week, 5 ECGs from this test file will be transmitted to EPICARE as a normal clinic transmission. The procedure is as follows: Valid ARIC QC phantom IDs are provided to the Coding Center by the Coordinating Center, along with matched IDs from the test file. The editing function of the MAC 12 is to be used to create a record for each phantom ID by copying the record of the matched test file ID and replacing the original ID with the matched QC phantom ID.
- 3. In the event of hardware or software changes at the EPICARE ECG Computer Center, the entire test set will be transmitted to EPICARE, and the results of processing this retransmission will be compared to the original results to verify that the computer changes have not altered the computer processing of the ARIC ECG data.
- 3.1.4 Minneapolis ECG Reading Center
- 1. Blind rereading of clinic ECGs is performed in two ways:
 - a) The abnormal quality control ECGs that are retransmitted to EPICARE are returned to the Coding Center with the other

abnormals. The Coding Center makes no effort to distinguish these returned ECGs from the rest of a normal shipment from EPICARE. They are coded and reported in the usual manner. Thus, the Coding Center continually rereads the quality control ECGs that EPICARE determines to be abnormal. (The quality control ECGs that EPICARE determines to be normal are only sent to the Coding Center if they are chosen to be part of the 10% sample of normals that is included with the abnormals.)

- b) The Coordinating Center makes comparisons of repeated Reading Center readings by identifying the QC phantom IDs and comparing the results on these with the codes on the original IDs.
- 2. EPICARE will set up a test set of 100 ECGs in consultation with the Coordinating Center.
 - a) The Coordinating Center will periodically furnish EPICARE with a list of QC phantom IDs, matched to the original IDs in the test set. The IDs on each test ECG to be sent to the Reading Center will be altered to the QC phantom ID matching the original ID on this list.
 - b) EPICARE will transmit ECGs from this list along with regular transmissions to the Minneapolis Reading Center, at the average rate of 5 per 50 ECGs transmitted. The QC ECGs should be added in the middle of the transmission, not at the beginning or end, so that the QC ECGs cannot be easily picked out.
 - c) The Coordinating Center will compare repeated Reading Center readings by identifying the QC phantom IDs and comparing the codes for these IDs to the original codes. The first coding of these ECGs, unless it is changed during adjudication, will be considered the definitive coding.
 - d) Comparison of measurements by EPICARE and coding by Minnesota will indicate any possible deterioration of quality due to repeated phone line transmission, repeatability of ECG Computer Center measurements, and repeatability of ECG Reading Center Minnesota codes.

3.2 Cohort Hospital ECGs

A sample of cohort hospital records are reabstracted for quality control (QC), the second abstraction being under a QC ID. In the process, the ECGs are photocopied each time and sent to the Minnesota Coding Center, also under separate IDs. (The same originals must always be used when making copies.) The Coordinating Center then compares the replicate readings and reports the results to the Coding Center.

The ECG Coding Center will conduct internal repeat quality control on cohort hospital ECGs.

3.3 Surveillance Hospital ECGs

For a sample of hospitalization event of a cohort participant, both a surveillance event ID and a quality control ID are assigned. ECG's are copied twice and sent to the Minnesota ECG Reading Center for full

Minnesota coding and serial change coding under the two different ID's Appendix V. Comparison of the two sets of codes is made at the Coordinating Center in order to ascertain the degree of repeatability.

3.4 Data Acquisition

Quality control of data acquisition will be achieved by initial central training of technicians and subsequent certification of them and all "new" technicians involved during the course of the study. Study guidelines on "acceptable" noise levels are given earlier in this protocol under Self-Evaluation of Technical Performance. Feedback of clinic quality of ECG recording will also be reported by the EPICARE ECG Computing Center on receipt of ECGs transmitted by modem. The Performance Grade Level is included for every ECG in the monthly diskette sent to the Coordinating Center.

3.5 Training and Certification

3.5.1 Cohort ECGs

A central training session was held in January, 1992 in Charleston, South Carolina. Training included electrode placement, skin preparation, MAC PC menus and data entry and self-evaluation of technical performance. All new technicians are trained by the most senior certified technician. Training of new technicians must include observation of at least 6 ECG's being taken by the senior technician.

Once training is complete, the technician must be officially certified as capable of recording high-quality ECGs by the ECG Center. Certification ECGs must be done by obtaining 3 ECG's on <u>age-eligible participants</u>. Send the ECGs and the certification form (Appendix R) to the Minnesota ECG Reading Center. The tracing will be "logged in" and evaluated for ECG quality. The Minnesota ECG Center will notify the Coordinating Center when certification is complete. The Coordinating Center will notify the technician of certification status.

4. REFERENCES

- 1. The Minnesota Code Manual of Electrocardiographic Findings; Prineas RJ, Crow RS, Blackburn H. John Wright PSG, Inc., Littleton, MA 1982.
- 2. Rautaharju PM, Warren J, Jain U, Wolf HK, and Nielsen CI. Cardiac Infarction Injury Score: An Electrocardiographic Coding Scheme for Ischemic Heart Disease. Circulation 1981; 64(1):249-256.
- 3. Rautaharju PM, Wolf HK, Eifler WJ, and Blackburn H. A Simple Procedure for Positioning Precordial ECG and VCG Electrodes Using an Electrode Locator. Journal of Electrocardiology 1976; 9(1):35-40.

APPENDICES

ARIC

MARQUETTE MAC PC SETUP

To begin cardiograph setup, press to display the Main Menu:

†Task	V1+II+V	5		
PatInfo	Rhythm	25mm/s	10mm/mV	100Hz
	F2 3 F2+ 4	F3 5 6	F4 7 8	F5 F5+ 9 0

Next press the SHIFT/ALTERNATE FUNCTION and F1 keys at the same time to display the "System Functions" menu:

System Functions						
Storage	Setup	Dias	RevXmit			

Select "Setup" (F2) by pressing either $\begin{bmatrix} f_2 \\ 3 \end{bmatrix}$ or $\begin{bmatrix} f_2 + \\ 4 \end{bmatrix}$.

Contents

A. Date/Time	page 2
B. Phone	page 2
C. Lead Groups	page 3
D. Report Formats	page 4
E. Modem	page 7
F. Passwords	page 8
G. Miscellaneous	page 8
H. Defaults	page 11
I. Timeout	page 11

ARIC PROTOCOL 5. Electrocardiography - Visit 4 VERSION 4.0 09/97

STEP A DATE AND TIME SETUP

STEP B PHONE SETUP

U. of Minn. needs 8 to
get off campus, you might
need 9 or nothing.
"=" gives a pause for
off-campus dialtone.
"1" is for long distance.
The rest is EPICARE
receiving (910) 716-0837.

STEP C REPORT FORMATS SETUP

Report Formats for: Confrmd Unconf

Yes

Yes

F1+

F1+

No

F2

F2 3

Ask for Extra Copies of Plots:

F2 t

Νo

F2 t

4

Do not configure Confirmed.

Press F2 for Unconfirmed.

Clinic choice here. Some clinics may want extra copies

Clinic choice here. Marquette interpretation may be printed on ECG. However, the official ARIC interpretation is from EPICARE and the Minnesota Coding Center.

Suppress Orig Rpt Interpretation: YES

F1 F1+ F2 F2+ 2 3 4 Rhythm and Morpholosy Report (RMR): NO Yes No

 $\begin{array}{c} f_1 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$

NO

Report Formats Setup (Cont)

This is the only format to be printed.

ARIC PROTOCOL 5. Electrocardiography - Visit 4 VERSION 4.0 09/97

From here, press Return.

ARIC PROTOCOL 5. Electrocardiography - Visit 4 VERSION 4.0 09/97

• •

Step D Modem Setup --- Auto Dial

Step E PASSWORDS

Cart Setup Modem Passwds Misc Defaults More			
F2 3 F2+ 4	Passwords are probably not		
-			
System Passwords			
$\begin{bmatrix} f_1 \\ 1 \end{bmatrix} \text{ or } \begin{bmatrix} f_2 \\ 4 \end{bmatrix}$			
Step F Miscellaneous Setup			
Cart Setup Modem Passwds Misc Defaults More			
F3 F3+ 5 6			
For each of the following display prompts, type in the response or press a function (F) key. Then			
press to store that information.			
Line Frequency: 60 Hz 	60 Hz		
$\begin{bmatrix} f_1 \\ 1 \end{bmatrix} \begin{bmatrix} f_2 \\ 2 \end{bmatrix} \begin{bmatrix} f_2 \\ 3 \end{bmatrix} \begin{bmatrix} f_2 \\ 4 \end{bmatrix} = \begin{bmatrix} f_1 \\ 4 \end{bmatrix}$	The cost ID of mour ODICINA		
Cart ID: 0-255	The cart ID of your ORIGINAL is the same as your site ID If you get a different mach		
	the Minneapolis ECG Center.		
Site ID: 1-255	Site IDs: Minneapolis ARIC Forsyth Co. ARIC Hagerstown ARIC Jackson ARIC		
Institution Name: Up to 40 Characters	Enter your location and stu (Only 21 of the 40 characte show here but that's OK.)		
Number of Patient ID Disits: 9 1-12	9 digits		

ords are probably not needed.

art ID of your ORIGINAL MAC PC e same as your site ID. u get a different machine the r MUST BE DIFFERENT. Contact

Site	IDs:	Minneapolis	ARIC	=	5
		Forsyth Co.	ARIC	=	6
		Hagerstown	ARIC	=	7
		Jackson	ARIC	=	8

1.1.1

your location and study name. 21 of the 40 characters will here but that's OK.)

ARIC PROTOCOL 5. Electrocardiography - Visit 4 VERSION 4.0 09/97

Miscellaneous Setup (Cont)

Miscellaneous Setup (Cont)

Store/Transmit Control: Store Transmit

 $\begin{bmatrix} F_1 \\ 1 \end{bmatrix} \begin{bmatrix} F_1 \\ 2 \end{bmatrix} \begin{bmatrix} F_2 \\ 3 \end{bmatrix} \begin{bmatrix} F_2 \\ 4 \end{bmatrix}$

Power UP Speed: 25 mm/s 25 mm/s 50 mm/s $\frac{1}{2}$ $\frac{f_1^2}{2}$ $\frac{f_2^2}{3}$ $\frac{f_2^2}{4}$

Store

.

Power Up Filter: 100 Hz 40Hz 100Hz

 $\begin{array}{c} F_1 \\ 1 \\ 2 \\ 3 \end{array} \begin{array}{c} F_2 \\ 4 \\ 4 \end{array}$

Screening Criteria: NO Yes No [7]+ [72] [72+ 2] 3 [4]

Baseline Roll Filter: .16 Hz .01Hz .02Hz .16Hz .32Hz 1 F1+ F2 F2+ F3 F3+ F4+ F42 3 4 5 F3+ F4+ F4 8

QC Baseline Drift: YES Yes No

QC Muscle Yes	Tremor: No	YES
F1 F1+ F2 1 2 3	F 2 † 4	

NO

Store

25 mm/s

100 Hz

.16 Hz

YES

YES

Modem

Yes

Returns

display.

Step G Defaults Setup

NEVER say yes to return to original factory setup defaults because that will set the machine to delete ECGs after transmission (see the last window on page 9).

More

More

none(ac)

1

F4 🕈 8

30

F5 1 10

> This saves the battery.

"Timeout" is the amount of time it takes for the LCD to go blank when the MAC PC is not being used.

5

F27

F3+ 6

If the "none(ac)" option is selected, the timeout length will be indefinite if and only if a charger (Power Module) is attached to the MAC PC and the battery status (section XII) message indicates "OK" or "FULL". If "none(ac)" is selected and a charger is NOT attached, then the timeout length will be set to 10 minutes.

ARIC PROTOCOL 5. Electrocardiography - Visit 4 VERSION 4.0 09/97

Appendix B

MAC PC ENTRY INFORMATION NEEDED FOR EACH PARTICIPANT

After each entry - press return

· ·	
Task V1+II+V5 PatInfo Rhythm 25 mm/s 10 mm/mV 100Hz	Press either F1 or F1.
F1 F1 F2 F2 F3 F3 F4 F4 F5 F5 1 2 3 4 5 6 7 8 9 0	
New Patient: Yes No	This won't show up if the machine was just turned on. Press either F1 button if it is a new person. Press either F2 button if you want to correct an entry and/or take another ECG on the same person.
Patient, Last Name: A to Z, Space, ', .	Enter first 4 letters of Last Name: examples: SMIT, JONE, HESS
Patient, First Name: A to Z, O to 9, Space, , - , .	Enter complete ID. : MI23456
Patient ID: Digits 0 to 9	Repeat digit portion of ID.: 123456
Referred by (Physician Name)	Leave blank.
Location Number: 0 to 99	Enter Contact Year (1,2,etc.)
Room Number: Any 5 Characters	Enter your Technician ID number.

...

.

Date of Birth (DD-MMM-YY) DD=Day, MMM=Honth Name, YY=Year	To type dash press and at the same time. DD=Day (1-31) MMM=LETTERS of month (JAN., FEB., etc.) YY=Year (86, 87, etc.)
Height: 0 to 999 -	Put in E to V6 distance in cm.
Weight: 0 to 999 lbs.	Put in filter setting at 16.
Sex: Male Female	Indicates sex, Press either F1 or F2.
Race: Cauc Black Oriental Hisp More	<u>DO NOT</u> leave blank Indicate Race
Medication: None Unknown Clr+Add Add Scroll	Leave blank
MAC PC is now ready to take a 12-lead ECG	Press MM 12
Follow directions on screen	
- -	

|--|

Figure 11. Typical Electrocardiogram Using MAC PC

٦

A - 14

Editing Participant Information on a MAC-PC

With Storage on the screen, press ...

1. MORE ... followed by

.

- 2. EDIT ... followed by
- 3. PATIENT DATA ... followed by ENTER

The data for each participant in the MAC-PC is now displayed, one at a time, on the screen. If you do not wish to Edit the currently displayed participant, respond by pressing ...

4. NO

If you do wish to Edit the currently displayed participant, respond by pressing ...

5. YES ... followed by ENTER

You are now shown the selected participant's Last name.

- 6. If no change is to be made, press ... ENTER
- 7. If you want to change the Last name, use the Backspace key to erase unwanted characters and type in correct ones. Press ... ENTER

You are now shown the selected participant's First name. Make changes to this field as above. (Remember, the First name is made up of your Center Code character plus ID number.)

You are now shown the selected participant's ID number. Make changes to this field as above.

To make changes on other participant information, keep pressing ENTER until screen displays information wanted and follow above steps.

When the last participant has been displayed and dealt with, you must now instruct the MAC-PC to save any changes you have made.

- 8. You must Press Shift and F1 together ... followed by
- 9. PRINT REPORT ... followed by ENTER
- 10. Print a directory to be sure correction has been made. You will note corrected ECG moves to bottom of directory. This is useful in the case of deleting every tracing except the one corrected -- which is then transmitted again to EPICARE.

MINNESOTA CODE 1982

Q and QS Patterns

(Do not code in the presence of WPW code 6-4-1.) To qualify as a Q-wave, the deflection should be at least 0.1 mV (1 mm in amplitude).

Anterolateral site (leads I, aVL, V6)

- 1-1-1 Q/R amplitude ratio $\ge 1/3$, plus Q duration ≥ 0.03 sec in lead I or V₆.
- 1-1-2 Q duration ≥ 0.04 sec in lead I or V₆.
- 1-1-3 Q duration ≥ 0.04 sec, plus R amplitude ≥ 3 mm in lead aVL.
- 1-2-1 Q/R amplitude ratio $\geq 1/3$, plus Q duration ≥ 0.02 sec and < 0.03 sec in lead I or V₆.
- 1-2-2 Q duration ≥ 0.03 sec and < 0.04 sec in lead I or V₆.
- 1-2-3 QS pattern in lead I. Do not code in the presence of 7-1-1.
- 1-2-8 Initial R amplitude decreasing to 2 mm or less in every beat (and absence of codes 3-2, 7-1-1, 7-2-1, or 7-3) between V_5 and V_6 . (All beats in lead V_5 must have an initial R > 2 mm.)
- 1-3-1 Q/R amplitude ratio $\geq \frac{1}{3}$ and $< \frac{1}{3}$, plus Q duration ≥ 0.02 sec and < 0.03 sec in lead I or V₆.
- 1-3-3 Q duration ≥ 0.03 sec and < 0.04 sec, plus R amplitude ≥ 3 mm in lead aVL.

Posterior (inferior) site (leads II, III, aVF)

- 1-1-1 Q/R amplitude ratio $\ge \frac{1}{3}$, plus Q duration ≥ 0.03 sec in lead II.
- 1-1-2 Q duration ≥ 0.04 sec in lead II.
- 1-1-4 Q duration ≥ 0.05 sec in lead III, plus a Q-wave amplitude ≥ 1.0 mm in the majority of beats in lead aVF.
- 1-1-5 Q duration ≥ 0.05 sec in lead aVF.
- 1-2-1 Q/R amplitude ratio $\ge \frac{1}{2}$, plus Q duration ≥ 0.02 sec and < 0.03 sec in lead II.
- 1-2-2 Q duration ≥ 0.03 sec and < 0.04 sec in lead II.
- 1-2-3 QS pattern in lead II. Do not code in the presence of 7-1-1.
- 1-2-4 Q duration ≥ 0.04 sec and < 0.05 sec in lead III, plus a Q-wave ≥ 1.0 mm amplitude in the majority of beats in aVF.
- 1-2-5 Q duration ≥ 0.04 sec and < 0.05 sec in lead aVF.
- 1-2-6 Q amplitude \geq 5.0 mm in leads III or aVF.
- 1-3-1 Q/R amplitude ratio $\ge \frac{1}{3}$ and $< \frac{1}{3}$, plus Q duration ≥ 0.02 sec and < 0.03 sec in lead II.
- 1-3-4 Q duration ≥ 0.03 sec and < 0.04 sec in lead III, plus a Q-wave ≥ 1.0 mm amplitude in the majority of beats in lead aVF.</p>
- 1-3-5 Q duration ≥ 0.03 sec and < 0.04 sec in lead aVF.
- 1-3-6 QS pattern in each of leads III and aVF. (Do not code in the presence of 7-1-1.)

Anterior site (leads V_1 , V_2 , V_3 , V_4 , V_5)

- 1-1-1 Q/R amplitude ratio $\ge \frac{1}{2}$ plus Q duration ≥ 0.03 sec in any of leads V_2 , V_3 , V_4 , V_5 .
- 1-1-2 Q duration ≥ 0.04 sec in any of leads V_1 , V_2 , V_3 , V_4 , V_5 .
- 1-1-6 QS pattern when initial R-wave is present in adjacent lead to the right on the chest, in any of leads V₂, V₃, V₄, V₅, V₆.
- 1-1-7 QS pattern in all of leads $V_1 V_4$ or $V_1 V_5$.

- 1-2-1 Q/R amplitude ratio $\ge \frac{1}{3}$, plus Q duration ≥ 0.02 sec and < 0.03 sec, in any of leads V₂, V₃, V₄, V₅.
- 1-2-2 Q duration ≥ 0.03 sec and < 0.04 sec in any of leads V_2 , V_3 , V_4 , V_5 .
- 1-2-7 QS pattern in all of leads V1, V2, and V3. (Do not code in the presence of 7-1-1.)
- 1-2-8 Initial R amplitude decreasing to 2.0 mm or less in every beat (and absence of codes 3-2, 7-1-1, 7-2-1, or 7-3) between any of leads V₂ and V₃, V₃ and V₄, or V₄ and V₅. (All beats in the lead immediately to the right on the chest must have an initial R > 2 mm.)
- 1-3-1 Q/R amplitude ratio $\ge \frac{1}{3}$ and $< \frac{1}{3}$ plus Q duration ≥ 0.02 sec and < 0.03 sec in any of leads V_2 , V_3 , V_4 , V_5 .
- 1-3-2 QS pattern in lead V_1 and V_2 . (Do not code in the presence of 3-1 or 7-1-1.)

QRS Axis Deviation

(Do not code in presence of low-voltage QRS, code 9-1, WPW 6-4-1, ventricular conduction defects, or 7-1-1, 7-2-1, and 7-4.)

- 2-1 Left. QRS axis from 30° through 90° in leads I, II, III. (The algebraic sum of major positive and major negative QRS waves must be zero or positive in I, negative in III, and zero or negative in II.)
- 2-2 Right. QRS axis from + 120° through 150° in leads I, II, III. (The algebraic sum of major positive and major negative QRS waves must be negative in I, and zero or positive in III, and in I must be one-half or more of that in III.)
- 2-3 Right (optional code when 2-2 is not present). QRS axis from +90° through +119° in leads I,
 II, III. (The algebraic sum of major positive and major negative QRS waves must be zero or negative in I and positive in II and III.)
- 2-4 Extreme axis deviation (usually S1, S2, S3 pattern). QRS axis from -90° through -149° in leads I, II, and III. (The algebraic sum of major positive and major negative QRS waves must be negative in each of leads I, II, and III.)
- 2-5 Indeterminate axis. QRS axis approximately 90° from the frontal plane. (The algebraic sum of major positive and major negative QRS waves is zero in each of leads I, II and III, or the information from these three leads is incongruous.)

High Amplitude R Waves

- 3-1 Left: R amplitude > 26 mm in either V₅ or V₆, or R amplitude > 20.0 mm in any of leads I, II, III, aVF, or R amplitude > 12.0 mm in lead aVL measured only on second to last complete normal beat.
- 3-2 Right: R amplitude ≥ 5.0 mm and R amplitude ≥ S amplitude in the majority of beats in lead V₁, when S amplitude is > R amplitude somewhere to the left on the chest of V₁ (codes 7-3 and 3-2, if criteria for both are present).
- 3-3 Left (optional code when 3-1 is not present): R amplitude > 15.0 mm but \leq 20.0 mm in lead I, or R amplitude in V₅ or V₆, plus S amplitude in V₁ > 35.0 mm.
- 3-4 Criteria for 3-1 and 3-2 both present.

ST Junction (J) and Segment Depression

(Do not code in the presence of codes 6-4-1, 7-1-1, 7-2-1 or 7-4. When 4-1, 4-2, or 4-3 is coded, then a 5-code must also be assigned except in lead V_1 .)

Anterolateral site (leads I, aVL, V_6)

- 4-1-1 STJ depression ≥ 2.0 mm and ST segment horizontal or downward sloping in any of leads I, aVL, or V₆.
- 4-1-2 STJ depression ≥ 1.0 mm but < 2.0 mm, and ST segment horizontal or downward sloping in any of leads I, aVL, or V₆.
 - 4-2 STJ depression ≥ 0.5 mm and < 1.0 mm and ST segment horizontal or downward sloping in any of leads I, aVL, or V₆.
 - 4-3 No STJ depression as much as 0.5 mm but ST segment downward sloping and segment or T-wave nadir ≥ 0.5 mm below P-R baseline, in any of leads I, aVL, or V₆.
 - 4-4 STJ depression \ge 1.0 mm and ST segment upward sloping or U-shaped, in any of leads I, aVL, or V₆.

Posterior (inferior) site (leads II, III, aVF)

- 4-1-1 STJ depression ≥ 2.0 mm and ST segment horizontal or downward sloping in lead II or aVF.
- 4-1-2 STJ depression ≥ 1.0 mm but < 2.0 mm and ST segment horizontal or downward sloping in lead II or aVF.
 - 4-2 STJ depression ≥ 0.5 mm and < 1.0 mm and ST segment horizontal or downward sloping in lead II or aVF.
 - 4-3 No STJ depression as much as 0.5 mm, but ST segment downward sloping and segment or T-wave nadir ≥ 0.5 mm below P-R baseline in lead II.
 - 4-4 STJ depression \ge 1.0 mm and ST segment upward sloping, or U-shaped, in lead II.

Anterior site (leads V_1 , V_2 , V_3 , V_4 , V_5)

- 4-1-1 STJ depression ≥ 2.0 and ST segment horizontal or downward sloping in any of leads V_1 , V_2 , V_3 , V_4 , V_5 .
- 4-1-2 STJ depression \ge 1.0 mm but < 2.0 mm and ST segment horizontal or downward sloping in any of leads V₁, V₂, V₃, V₄, V₅.
 - 4-2 STJ depression ≥ 0.5 mm and < 1.0 mm and ST segment horizontal or downward sloping in any of leads V₁, V₂, V₃, V₄, V₃.
 - 4-3 No STJ depression as much as 0.5 mm, but ST segment downward sloping and segment or T-wave nadir ≥ 0.5 mm below P-R baseline in any of leads V₂, V₃, V₄, V₅.
 - 4-4 STJ depression ≥ 1.0 mm and ST segment upward sloping or U-shaped in any of leads V₁, V₂, V₃, V₄, V₃.

T-Wave Items

(Do not code in the presence of codes 6-4-1, 7-1-1, 7-2-1 or 7-4.)

Anterolateral site (leads I, aVL, V_6)

5-1 T amplitude negative 5.0 mm or more in either of leads 1, V_6 , or in lead aVL when R amplitude is ≥ 5.0 mm.

- 5-2 T amplitude negative or diphasic (positive-negative or negative-positive type) with negative phase at least 1.0 mm but not as deep as 5.0 mm in lead 1 or V₆, or in lead aVL when R amplitude is ≥ 5.0 mm.
- 5-3 T amplitude zero (flat), or negative, or diphasic (negative-positive type only) with less than 1.0 mm negative phase in lead I or V_6 , or in lead aVL when R amplitude is ≥ 5.0 mm.
- 5-4 T amplitude positive and T/R amplitude ratio $< \frac{1}{20}$ in any of leads I, aVL, V₆; R wave amplitude must be ≥ 10.0 mm.

Posterior (inferior) site (leads II, III, aVF)

- 5-1 T amplitude negative 5.0 mm or more in lead II, or in lead aVF when QRS is mainly upright.
- 5-2 T amplitude negative or diphasic with negative phase (negative-positive or positive-negative type) at least 1.0 mm but not as deep as 5.0 mm in lead II, or in lead aVF when QRS is mainly upright.
- 5-3 T amplitude zero (flat), or negative, or diphasic (negative-positive type only) with less than 1.0 mm negative phase in lead II; not coded in lead aVF.
- 5-4 T amplitude positive and T/R amplitude ratio $< \frac{1}{20}$ in lead II; R wave amplitude must be ≥ 10.0 mm.

Anterior site (leads V_2 , V_3 , V_4 , V_5)

- 5-1 T amplitude negative 5.0 mm or more in any of leads V_2 , V_3 , V_4 , V_5 .
- 5-2 T amplitude negative (flat), or diphasic (negative-positive or positive-negative type) with negative phase at least 1.0 mm but not as deep as 5.0 mm, in any of leads V_2 , V_3 , V_4 , V_5 .
- 5-3 T amplitude zero (flat), or negative, or diphasic (negative-positive type only) with less than 1.0 mm negative phase, in any of leads V_3 , V_4 , V_5 .
- 5-4 T amplitude positive and T/R amplitude ratio $< \frac{1}{20}$ in any of leads V₃, V₄, V₅; R wave amplitude must be ≥ 10.0 mm.

A-V Conduction Defect

- 6-1 Complete (third degree) A-V block (permanent or intermittent) in any lead. Atrial and ventricular complexes independent, and atrial rate faster than ventricular rate, with ventricular rate < 60.</p>
- 6-2-1 Mobitz Type II (occurrence of P-wave on time with dropped QRS and T).
- 6-2-2 Partial (second degree) A-V block in any lead (2:1 or 3:1 block).
- 6-2-3 Wenckebach's Phenomenon (P-R interval increasing from beat to beat until QRS and T dropped).
- 6-3 P-R (P-Q) interval \ge 0.22 sec in the majority of beats in any of leads I, II, III, aVL, aVF.
- 6-4-1 Wolff-Parkinson-White Pattern (WPW), persistent. Sinus P-wave. P-R interval < 0.12 sec, plus QRS duration ≥ 0.12 sec, plus R peak duration ≥ 0.06 sec, coexisting in the same beat and present in the majority of beats in any of leads I, II, aVL, V₄, V₅, V₆. (6-4-1 suppresses 1-2-3, 1-2-7, 1-2-8, 1-3-2, 1-3-6, all 3, 4, 5, 9-2, 9-4, 9-5 codes.)
- 6-4-2 WPW Pattern, intermittent. WPW pattern in ≤ 50% of beats in appropriate leads.
- 6-5 Short P-R interval. P-R interval < 0.12 sec in all beats of any two of leads I, II, III, aVL, aVF.
- 6-6 Intermittent aberrant atrioventricular conduction. P-R > 0.12 sec (except in presence of 6-5 or heart rate greater than 100); wide QRS complex > 0.12 sec; normal P-wave when most beats are sinus rhythm. (Do not code in the presence of 6-4-2.)
- 6-8 Artificial pacemaker.

Ventricular Conduction Defect

- 7-1-1 Complete left bundle branch block (LBBB). (Do not code in presence of 6-1, 6-4.1, 6-8, 8-2-1 or 8-2-2.) QRS duration ≥ 0.12 sec in a majority of beats (of the same QRS pattern) in any of leads 1, 11, 111, aVL, aVF, plus R peak duration ≥ 0.06 sec in a majority of beats (of the same QRS pattern) in any of leads 1, 11, aVL, V₅, V₆. (7-1-1 suppresses 1-2-3, 1-2-7, 1-2-8, 1-3-2, 1-3-6, all 2, 3, 4, 5, 9-2, 9-4, 9-5 codes. If any other codable Q-wave coexists with the LBBB pattern, code the Q and diminish the 7-1-1 code to a 7-4 code.)
- 7-1-2 Intermittent left bundle branch block. Same as 7-1-1 but with presence of normally conducted QRS complexes of different shape than the LBBB pattern.
- 7-2-1 Complete right bundle branch block (RBBB). (Do not code in the presence of 6-1, 6-4-1, 6-8, 8-2-1 or 8-2-2.) QRS duration ≥ 0.12 sec in a majority of beats (of the same QRS pattern) in any of leads I, II, III, aVL, aVF, plus: R' > R in V₁ or QRS mainly upright, plus R peak duration ≥ 0.06 sec in V₁ or V₂; or V₂; or S duration > R duration in all beats in lead I or II. (Suppresses 1-2-8, all 2-, 3-, 4- and 5-codes, 9-2, 9-4, 9-5.)
- 7-2-2 Intermittent right bundle branch block. Same as 7-2-1 but with presence of normally conducted QRS complexes of different shape than the RBBB pattern.
 - 7-3 Incomplete right bundle branch block. QRS duration < 0.12 sec in each of leads I, II, III, aVL, aVF, and R' > R in either of leads V₁, V₂ (Code as 3-2 in addition if those criteria are met. 7-3 suppresses code 1-2-8.)
 - 7-4 Intraventricular block. QRS duration ≥ 0.12 sec in a majority of beats in any of leads I, II, III, aVL, aVF. (7-4 suppresses all 2, 3, 4, 5, 9-2, 9-4, 9-5 codes.)
 - 7-5 R-R' pattern in either of leads V_1 , V_2 with R' amplitude $\leq R$.
 - 7-6 Incomplete left bundle branch block. (Do not code in the presence of any codable Q- or QSwave.) QRS duration ≥ 0.10 sec and < 0.12 sec in the majority of beats of each of leads I, aVL, and V₃ or V₆.
 - 7-7 Left anterior hemiblock (LAH). QRS duration < 0.12 sec in the majority of beats in leads I, II, III, aVL, aVF, plus Q-wave amplitude ≥ 0.25 mm and < 0.03 sec duration in lead I, plus left axis deviation of -45° or more negative. (In presence of 7-2, code 7-8 if axis is < -45° and the Q-wave in lead I meets the above criteria.)</p>
 - 7-8 Combination of 7-7 and 7-2.

Arrhythmias

- 8-1-1 Presence of frequent atrial or junctional premature beats (10% or more of recorded complexes).
- 8-1-2 Presence of frequent ventricular premature beats (10% or more of record complexes).
- 8-1-3 Presence of both atrial and/or junctional premature beats and ventricular premature beats (so that individual frequencies are < 10% but combined premature beats are \ge 10% of complexes).
- 8-1-4 Wandering atrial pacemaker.
- 8-1-5 Presence of 8-1-2 and 8-1-4.
- 8-2-1 Ventricular fibrillation or ventricular asystole.
- 8-2-2 Persistent ventricular (idioventricular) rhythm.
- 8-2-3 Intermittent ventricular tachycardia. Three or more consecutive ventricular premature beats occurring at a rate ≥ 100. This includes more persistent ventricular tachycardia.
- 8-2-4 Ventricular parasystole (should not be coded in presence of 8-3-1).
- 8-3-1 Atrial fibrillation (persistent).
- 8-3-2 Atrial flutter (persistent).

- 8-3-3 Intermittent atrial fibrillation (code if 3 or more clear-cut, consecutive sinus beats are present in any lead).
- 8-3-4 Intermittent atrial flutter (code if 3 or more clear-cut, consecutive sinus beats are present in any lead).
- 8-4-1 Supraventricular rhythm persistent. QRS duration < 0.12 sec; and absent P-waves or presence of abnormal P-waves (inverted or flat in aVF); and regular rhythm.
- 8-4-2 Supraventricular tachycardia intermittent. Three consecutive atrial or junctional premature beats occurring at a rate \ge 100.
- 8-5-1 Sinoatrial arrest. Unexpected absence of P, QRS and T, plus a R-R interval at a fixed multiple of the normal interval, $\pm 10\%$.
- 8-5-2 Sinoatrial block. Unexpected absence of P, QRS and T, preceded by progressive shortening of P-P intervals. (R-R interval at a fixed multiple of the normal interval, $\pm 10\%$.
- 8-6-1 A-V dissociation with ventricular pacemaker (without capture). Requires: P-P and R-R occur at variable rates with ventricular rate as fast as or faster than the atrial rate, plus variable P-R intervals, plus no capture beats.
- 8-6-2 A-V dissociation with ventricular pacemaker (with capture).
- 8-6-3 A-V dissociation with atrial pacemaker (without capture).
- 8-6-4 A-V dissociation with atrial pacemaker (with capture).
 - 8-7 Sinus tachycardia (over 100/min).
 - 8-8 Sinus bradycardia (under 50/min).
 - 8-9 Other arrhythmias. Heart rate may be recorded as a continuous variable.
- ST Segment Elevation

Anterolateral site (leads I, aVL, V_6)

9-2 ST segment elevation \ge 1.0 mm in any of leads I, aVL, V₆.

Posterior (inferior) site (leads II, III, aVF)

9-2 ST segment elevation \ge 1.0 mm in any of leads II, III, aVF.

Anterior site (leads V_1 , V_2 , V_3 , \dot{V}_4 , V_5)

9-2 ST segment elevation ≥ 1.0 mm in lead V₅ or ST segment elevation ≥ 2.0 mm in any of leads V₁, V₂, V₃, V₄.

Miscellaneous Items

- 9-1 Low QRS amplitude. QRS peak-to-peak amplitude < 5 mm in all beats in each of leads I, II, III, or < 10 mm in all beats in each of leads V1, V2, V3, V4, V5, V6. (Check calibration before coding.)
- 9-3 P-wave amplitude \ge 2.5 mm in any of leads II, III, aVF, in a majority of beats.
- 9-4-1 QRS transition zone at V₃ or to the right of V₃ on the chest. (Do not code in the presence of 6-4-1, 7-1-1, 7-2-1 or 7-4.)
- 9-4-2 QRS transition zone at V₄ or to the left of V₄ on the chest. (Do not code in the presence of 6-4-1, 7-1-1, 7-2-1 or 7-4.)
 - 9-5 T-wave amplitude > 12 mm in any of leads I, II, III, aVL, aVF, V₁, V₂, V₃, V₄, V₅, V₆. (Do not code in the presence of 6-4-1, 7-1-1, 7-2-1 or 7-4.)
- 9-8-1 Technical problems which interfere with coding.
- 9-8-2 Technical problems which do not interfere with coding.

A - 20

The codes in the left column suppress codes in the right column.

Code	Suppresses this code(s)
All Q-, QS-codes	7-6
Q > 0.03 in lead I	7-7
3-1	1-3-2
3-2	1-2-8, 7-3
6-1	All other codes except 8-2
6-4-1	All other codes
6-8	All other codes
7-1-1	1-2-3, 1-2-7, 1-2-8, 1-3-2, 1-3-6, all 2-, 3-, 4-, and 5-codes,
•	7-7, 9-2, 9-4, 9-5
7-2-1	1-2-8, all 2-, 3-, 4-, and 5-codes, 9-2, 9-4, 9-5
7-3	1-2-8
7-4	All 2-, 3-, 4-, and 5-codes, 9-2, 9-4, 9-5
8-1-2	8-2-4
8-1-4	8-1-1, 9-3
8-2-1	All other codes
8-2-2	All other codes
8-2-3	8-1-2
8-3-1	8-1-1, 8-1-2
8-3-2	6-2-2, 8-1-1, 8-1-2
8-3-3	8-1-1, 8-1-2
8-3-4	6-2-2
8-4-1	6-5
8-4-1 + heart rate \ge 140	All other codes except 7-4 or 6-2
Heart rate > 100	6-5
8-4-2	8-1-1
9-1	All 2-codes

PERFORMANCE GRADE LEVEL	NOISE	DRIF	DRIFT		
	µvrms	Overall (mV)	Beat to Beat (µV) Rest		
1	≤30	≤0.7	≤190		
2	≤60	≤0.8	≤250		
3	≤90	≤0.9	≤310		
4	≤120	≤1.0	≤370		
5	>120	>1.0	>370		

Performance Grade Levels

ARIC PROTOCOL 5. Electrocardiography - Visit 4 VERSION 4.0 09/97

Appendix G 🥤

Position	Length	Contents	Assigned By		
1 - 7	7	Subject ID in format ANNNNNC Blank filled	ARIC Clinic		
13 - 15	3	ECG (Form Code)	ARTC CC		
15 - 16	1	A (Form version)	ARIC CC		
10 - 10	1	P (Point Version)	ARIC CC		
17 - 17	2	3 (Study code)	ARIC CC		
10 - 10	2	37 (Becord)	ARIC CC		
13 - 21	2	37 (Recold) 2 (Norgion)	AKIC CC		
22 - 22	2	S (VEISION) A (Contrat Yorn, blank filled	NRTC Clinic		
23 - 24	2	right justified)	ARIC CIINIC		
25 - 42	18	Blank filled			
43 - 44	2	00 first time record processed. Incremented by one for new processing at EPI. (in case new version of processing programs)	EPICARE		
45 - 52	8	Date of creation of record in format MM/DD/YY	EPICARE		
53 - 57	5	Time of creation of record in format HH:MM	EPICARE		
58 - 60	3	Operator Code in ASCII (Blank)	EPICARE		
61 - 68	8	Date that record was updated in format MM/DD/YY. Blank if not relevant	EPICARE		
69 - 73	5	Time that record was updated in format HH:MM. Blank if not relevant	EPICARE		
74 - 74	1	A if new record to be added to database C if change in record	EPICARE		
75 - 76	2	Diskette number (00)	EPICARE		
77 - 77	1	Blank			
85 - 87	2	ECG Tech Code	EPICARE		
88 - 88	1	ECG Visual Coding Flag	EPICARE		
89-130	42	Subject Name, Last, First as received from MAC12 ECG cart			
131-132	2	Filter Setting	ARIC Clinic		
133-134	2	Cart Code	ARIC Clinic		
135-145	11	Recording date	ARIC Clinic		
146-150	5	Recording time	ARIC Clinic		
151-151	1	Quality Grade (1 - 5)	EPICARE		
152-153	2	Minnesota Code L1	EPICARE		
154-155	2	Minnesota Code Fl	EPICARE		

.

A - 24

Appendix G

EPICARE ECG Reading Center Data Record

Position	Length	Contents	Assigned By
156-157	2	Minnesota Code V1	EPICARE
158-159	2	Minnesota Code L4	EPICARE
160-161	2	Minnesota Code F4	EPICARE
162-163	2	Minnesota Code V4	EPICARE
164-165	2	Minnesota Code L5	EPICARE
166-167	2	Minnesota Code F5	EPICARE
168-169	· 2	Minnesota Code V5	EPICARE
170-171	2	Minnesota Code L92	EPICARE
172-173	2	Minnesota Code F92	EPICARE
174-175	2	Minnesota Code V92	EPICARE
176-177	2	Minnesota Code C2	EPICARE
178-179	2	Minnesota Code C3	EPICARE
180-181	2	Minnesota Code C6	EPICARE
182-183	2	Minnesota Code C7	EPICARE
184-185	2	Minnesota Code C91	EPICARE
186-187	2	Minnesota Code C93	EPICARE
188-189	2	Minnesota Code C94	EPICARE
190-191	2	Minnesota Code C95	EPICARE
192-193	2	Minnesota Code E7	EPICARE
194-200	2		EPICARE
201-203	3	Heart Rate	EPICARE
204-208	5	Q or QS I	EPICARE
209-213	5	Q or QS III	EPICARE
214-218	5	Q or QS V5	EPICARE
219-223	5	Q or OS V6	EPICARE
224-227	4	R amplitude I	EPICARE
228-231	4	R amplitude III	EPICARE
232-235	4	R amplitude AVL	EPTCARE
233-239	7	R amplitude V2	EPICARE
240-243	4	R amplitude V5	EPICARE
244-247	4	R amplitude V6	EPICARE
248-252	5	S amplitude T	EPICARE
253-257	5	S amplitude IIT	EPICAPE
258-262	5	S amplitude V1	FRICARE
263-267	5	S amplitude V2	EFICARE
268-272	5	S amplitude V5	EFICARE
273-277	5	S amplitude VS	EPICARE
278-282	5	D pogetive emplitude DVI	EPICARE
283-287	5	T negacive amplitude AVL	EPICARE
288-292	5	T negative amplitude AVF	EPICARE
200-292	5 E	I negative amplitude V6	EPICARE
298-202	5 E	T positive amplitude AVR	EPICARE
202-202	5	T positive amplitude VI	EPICARE
309-210	5	T positive amplitude V6	EPICARE
200-310	3	QKS interval	EPICARE

.

Appendix H

.

A - 25

EPICARE ECG READING CENTER FULL REPORT RECORD FORMAT

•

ITEM	CHARACTER POSITION	FIELD LENGTH	DESCRIPTION	
1	1-2	2	Site number	
2	3-14	12	I.D. number	
3	15-56	42	Name	
4	57-58	2	Location Code	
5	59-60	2	Cart Code	
6	61-77	17	Recording date and time	
7	78-78	1	Quality Grade	
8	79-80	2	Minnesota Codes: Ll	
9	81-82	2	Fl	
10	83-84	2	V1	
11	85-86	2	L4	
12	87-88	2	F4	
13	89-90	2	V4	
14	91-92	2	L5	
15	93-94	2	F5	
16	95-96	2	V5	
17	97-98	2	L92	
18	99-100	2	F92	
19	101-102	2	V92	
20	103-104	2	C2	
21	107-108	2	C3	
22	107-108	2	C8	
23	111-112	2	C91	
25	113-114	2	C93	
26	115-116	2	C94	
27	117-118	2	C95	
28	119-120	2	E7	
29	121-130	10	First name	
30	131-135	5	Room number	
31	136-142	7	CIIS	
32	143-149	7	LVM	
33	150-156	7	LVM Index	
34	157-157	1	Lead reject flag: I	
35	158-158	1	II	
36	159-159	1	. III	
37	160-160	1	AVR	
38	161-161	1	AVL	
39	162-162	1	AVF	
40	163-163	1	Vl	
41	164-164	1	V2	
42	165-165	1	V3	
43	166-166	1	V4	
44	167–167	1	V5	

Appendix H

A - 26

.

ITEM	CHARACTER POSITION	FIELD LENGTH	DESCRIPTION	
45	168-168	1		V6
46	169-171	3	Noise value for	I
47	172-174	3	lead: (source data)	II
48	175-177	3		V1
49	178-180	3		V2
50	181-183	3		V3
51	184-186	3		V4
52	187-189	3		V5
53	190-192	3		V6
54	193-195	3	Noise value for	I
55	196-198	3	lead: (average	II
56	199-201	3	complex)	V1
57	202-204	3		V2
58	205-207	3		V3
59	208-210	3		V4
60	211-213	3		V5
61	214-216	3		V6
62	217-219	3	Beat to beat	т
63	220-222	3	drift lead:	тт
64	223-225	3		V1
65	226-228	3		V2
66	229-231	3		V2 V2
67	232-234	3		V3 VA
68	235-237	3		V-1 V-5
69	238-240	3		VS
70	241-243	3	Pacidual drift	V 0 T
71	244-246	3		1
72	247-240	3	read: (average	11
73	250-252	3 2	comprex)	V1
74	252-255	3		V2
75	255-255	3		V3
76	250-250	3		V4
70	253-261	3		V5
79	202-204	3	 . . .	V6
70	263-267	3	Heart Rate	
7 <i>9</i>	268-271	4	Paxis	
80 01	212-215	4	QRS axis	
01	276-279	. 4	T axis	
02	280-283	4	P positive	I
03	284-287	4	amplitude lead	II
84	288-291	4		III
85	292-295	4		AVR
86	296-299	4		AVL
87	300-303	4		AVF
88	304-307	4		V1
89	308-311	4		V2

EPICARE ECG READING CENTER FULL REPORT RECORD FORMAT

EPICARE ECG READING CENTER FULL REPORT RECORD FORMAT

ITEM	CHARACTER POSITION	FIELD LENGTH	DESCRIPTION	
90	312-315	4	10 a. 1	V.3.
91	316-319	4		V4
92	320-323	4		v 5
93	324-327	4	_	V6
94	328-331	4	P negative	I
95	332-335	4	amplitude lead	II
96	336-339	4		III
97	340-343	4		AVR
98	344-347	4		AVL
99	348-351	4		AVF
100	352-355	4		VI
101	356-359	4		V2
102	360-363	4		V3
103	364-367	4		V4
104	368-371	4		V5
105	372-375	4		V6
106	376-378	3	P duration lead	I
107	379-381	3		II
108	382-384	3		III
109	385-387	3		AVR
110	388-390	3		AVL
111	391-393	3		AVF
112	394-396	3		VI
113	397-399	3		V2
114	400-402	3		V3
115	403-405	3		V4 ·
117	406-408	3		V5
11/	409-411	3		V6
118	412-412	1	T OF F FOR QS	I
119	413-413	1	in lead:	II
120		1		III
121	415-415	1		AVR
122	410-416	1		AVL
123	41/-41/	1		AVF.
124	418-418	1		V1
125	419-419	1		V2
120	420-420	1		V3
128	421-421	1		v 4 V 5
120	422-422	1		v5 VC
120	123-423	± 1	T on F for O	
121	767-969 195-195	1	in load.	3 1 TT
132	425-425	1	TU TEGO:	11 TTT
122	427-427	⊥ 1		
134	428-428	± 1		
	160 160	±		TATI

Appendix H

ITEM	CHARACTER POSITION	FIELD LENGTH	DESCRIPTION	
135	429-429	1		AVE
136	430-430	1		V1
137	431-431	1		V2
138	432-432	1		V3
139	433-433	1		V4
140	434-434	1		v 5
141	435-435	1		V6
142	436-440	5	Q or QS	I
143	441-445	5	amplitude lead:	II
144	446-450	5		III
145	451-455	5		AVR
146	456-460	5		AVL
147	461-465	5		AVF
148	466-470	5		V1
149	471-475	5		V2
150	476-480	5		V3
151	481-485	5		V4
152	486-490	5		V5
153	491-495	5		V6
154	496-498	3	Q or QS	I
155	499-501	3	duration lead:	II
156	502-504	3		III
157	505-507	3		AVR
158	508-510	3		AVL
159	511-513	3		AVF
160	514-516	3		V1
161	517-519	3		V2
162	520-522	3		V3
163	523-525	3		V4
164	526-528	3		V5
165	529-531	3	.	V6
167	532-535 Fac Fac	4	R amplitude lead:	I
169	536-539	4		II
169	540-543	4		III
170	549-547	4		AVR
171	552-555	4		AVL
172	556-559	4		AVF
173	560-563			VT VT
174	564-567			VZ
175	568-571	4		V J
176	572-575	4		V 4 17 E
177	576-579	- 4		v J VG
178	580-582	3	R duration lead.	о v т
179	583-585	3	W duracion tead:	1 TT
		-		**

EPICARE ECG READING CENTER FULL REPORT RECORD FORMAT

.

ARIC PROTOCOL 5. Electrocardiography - Visit 4 VERSION 4.0 09/97

Appendix H

.

EPICARE ECG READING CENTER FULL REPORT RECORD FORMAT

ITEM	CHARACTER POSITION	FIELD LENGTH	DESCRIPTION	
180	586-588	3	III	
181	589-591	3	AVR	
182	592-594	3	AVL	
183	595-597	3	AVF	
184	598-600	3	V1	
185	601-603	3	V2	
186	604-606	3	V3	
187	607-609	3	V4	
188	610-612	3	V5	
189	613-615	3	V6	
190	616-620	5	S amplitude lead: I	
191	621-625	5	II	
192	626-630	5	III	
193	631-635	5	AVR	
194	636-640	5	AVL	
195	641-645	5	AVF	
196	646-650	5	v1	
197	651-655	5	V2	
198	656-660	5	V3	
199	661-665	5	V4	
200	666-670	5	V5	
201	671-675	5	V6	
202	676-678	3	S duration lead: I	
203	679-681	3	II	
204	682-684	3	III .	
205	685-687	3	AVR	
206	688-690	3	AVL	
207	691-693	3	AVF	
208	694-696	3	V1	
209	697-699	3	V2	
210	700-702	3	V3	
211	703-705	3	V4	
212	706-708	3	V5	
213	709-711	3	V6	
214	712-715	4	R' amplitude lead:I	
215	716-719	4	II	
216	720-723	4	III	
217	724-727	4	AVR	
218	728-731	4	AVL	
219	732-735	4	AVF	
220	736-739	4	Vl	• •
221	740-743	4	V2	
222	744-747	4	V3	
223	748-751	4	V4	
224	752-755	4	v 5	

ARIC PROTOCOL 5. Electrocardiography - Visit 4 VERSION 4.0 09/97

A - 29

· . . .

ITEM	CHARACTER POSITION	FIELD LENGTH	DESCRIPTION	
225	756-759	4	······································	V6
226	760-762	3	R' duration lead:	T
227	763-765	3		- TT
228	766-768	3		 TTT
229	769-771	3		AVR
230	772-774	3		AVT.
231	775-777	3		AVF
232	778-780	3		V1
233	781-783	3		V2
234	784-786	3		V3
235	787-789	3		V4
236	790-792	3		V5
237	793-795	3		V6
238	796-799	4	J amplitude lead.	T
239	800-803	4	- mpradudo redu.	тт тт
240	804-807	4		TTT
241	808-811	4		AVR
242	812-815	4		AVI.
243	816-819	4		AVE
244	820-823	4		V1
245	824-827	4		V2
246	828-831	4		V3
247	832-835	4		V4
248	836-839	4		V5
249	840-843	4		V6
250	844-848	5	T negative	т
251	849-853	5	amplitude lead:	TT ·
252	854-858	5		 TTT
253	859-863	5		AVR
254	864-868	5		AVT.
255	869-873	5		AVE
256	874-878	5		V1
257	879-883	5		V2
258	884-888	5		V2 V3
259	889-893	5		VA
260	894-898	5		vs
261	899-903	5		V6
262	904-908	5	T positive	T
263	909-913	5	amplitude lead:	т тт
264	914-918	5		
265	919-923	5		AVR
266	924-298	5		AVT.
267	929-933	5		AVF
268	934-938	5		v1
269	939-943	5		V2

EPICARE ECG READING CENTER FULL REPORT RECORD FORMAT

Appendix H

..

.

EPICARE ECG READING CENTER FULL REPORT RECORD FORMAT

ITEM	CHARACTER POSITION	FIELD LENGTH	DESCRIPTION	
270	944-948	5		V3
271	949-953	5		V4
272	954-958	5		v 5
273	959-963	5		V6
274	964-966	3	P-R interval	
275	967-969	3	Q-T interval	
276	970-972	3	J-T interval	
277	973-975	3	QRS interval	
278	976-978	3	Height	
279	979-981	3	Weight	
280	982-984	3	Age	
281	985-985	1	Sex	
282	986-994	9	Race	
283	995-995	1	U wave code lead:	I
284 ·	996-996	1	A=coded as absent	II
285	99 7 -997	1	by human reader.	V1
286	998-998	1	<pre>*=lead rejected</pre>	V2
287	999-999	1	or bad data	V3
288	1000-1000	1	L=linear baseline	V4
289	1001-1001	1	E=exponential	v 5
290	1002-1002	1	baseline	V6
291 .	1003-1006	4	U wave amplitude	I
292	1007-1010	4	lead: set to O	II
293	1011-1014	4	if code = A or \star .	Vl
294	1015-1018	4	•	V2
295	1019-1022	4		V3
296	1023-1026	4		V4
297	1027-1030	4		v 5
298	1031-1034	4		V6
299	1035-1037	3	Global U wave duration	
300	1038-1044	7	Dalhousie ID number	

A - 31

COMPUTER TO VISUAL CODE CORRESPONDENCE

Q and QS Patterns

Exact correspondence between codes.

QRS Axis Deviation

Computer Codes		Visual Codes
2-0:	0 to 90 degrees	2-0
2-1-1:	0 to -30 degrees	2-0
2-1-2:	-30 to -90 degrees	2-1
2-2-1:	90 to 120 degrees	2-3
2-2-2:	120 to 150 degrees	2-2
2-3:	-150 to -90 degrees	2-4
2-4:	undetermined	2-5

2-codes are not coded at Minnesota ECG Reading Center.

High Amplitude R-waves

Computer Codes	Visual Codes
3-0	Not present
3-1-1	3 - 4*
3-1-2	The sum of these mutually
3-1-3 -	exclusive hierarchical
3-1-4	codes equal 3-1.
3-2	3 - 2
3-3-1	The sum of these codes
3-3-2	equals 3-3.

 * Exact correspondence between 3-1-1 and 3-4 is not possible. 3-4 is interpreted as the sum of 3-1 and 3-2 according to Minnesota Coding Rules. Computer coding rules classify 3-4 or 3-1-1 as any combination of 3-1, 3-2, and 3-3 codes.

ST Junction (J) and Segment Depression

Exact correspondence between codes.

T-Wave Items

Exact correspondence between codes.

COMPUTER TO VISUAL CODE CORRESPONDENCE

AV Conduction Defect

Computer Codes	Visual Codes
6-0	Not present
6-1	6-1-1
6-2	6-2-1 or 6-2-2 or 6-2-3
6-3	 6-3
6-4	6-4-1 or 6-4-2
6-5	6-5
Not coded by computer	6-6
Not coded by computer	6-8

Ventricular Conduction Defect

Computer Codes	Visual Codes
7-0	Not present
7-1	7-1-1 or 7-1-2
7-2	7-2-1 or 7-2-2
7-3	7-3
7-4	7-4
7-5	7-5
7-6	7-6
7-7	. 7-7
7-8	Combination of $7-2$ and $7-7$

St Segment Elevation

Exact correspondence between codes

Miscellaneous items

Exact correspondence between codes

A - 34

ABSTRACT REPRODUCTION FORM

Number_____ Please do not fill in!

13th International Congress on Electrocardiology 27th International Symposium on Vectorcardiography Washington, D.C., U.S.A. September 10-12, 1986

Please read instructions before typing abstract.

DEADLINE DATE: Abstract must be received no later than April 1, 1986.

Identify two key words or phrases within the title to be used for indexing in the Abstracts books.

1. LVH criteria

2. Computer ECG

Enter number of Session for which you would like this paper considered $\underline{B2}$.

The author affirms that the material herein will not have been previously published as a manuscript or presented at any meeting, that any animal studies conform with the "Guiding Principles in the Care and Use of Animals" of the American Physiological Society and that any human experimentation has been conducted according to a protocol approved by the institutional committee on ethics of human investigation or—if no such committee exists that it conforms with the principles of the Declaration of Helsinki of the World Medical Association (Clinical Research 14:193, 1966). AN ELECTROCARDIOGRAPHIC MODEL FOR PREDICTION OF LEFT VENTRICULAR MASS

Hermann K. Wolf, James W. Warren, Pentti M. Rautaharju, John A. Milliken, Eldon R. Smith, Ted E. Cuddy, Dept. Physiology and Biophysics, Dalhousie University, Halifax, N.S. Canada.

Left ventricular mass (LVM) has been shown to be an important independent predictor of cardiovascular mortality and there is considerable interest in the estimation of LVM from ECG, both for clinical and epidemiological applications. We evaluated the accuracy of LVM prediction using ECG's of 480 patients with echocardiograms recorded within one week. The age range was 16 to 90 years, 263 were women. The echocardiograms were measured by a trained technician and reviewed by an experienced cardiologist. The ECG's were processed by computer and a set of selected ECG and demographic parameters were used in a stepwise regression procedure to predict LVM and LVM/surface area (LVMI). The traditional Estes score predicted LVMI with R**2 .24. This prediction was improved to R**2 .50 by addition of age, TV1, RaVL+SV3, and SV1+RV5 as continuous variables. A marginally better prediction (R**2 .53) was achieved for LVM by a simpler equation using age, sex, RaVL, TV1, and RV5+SV1. It is concluded that an LVH score derived from age, sex and simple ECG measurements can predict LVM with a reasonable accuracy and considerably better than traditional criteria for LVH.

AUTHOR'S SIGNATURE

DATE March 28, 1986

NAME (Please print) Hermann K. Wolf MAILING ADDRESS Dept. Physiol. & Biophys., Dalhousie University, Halifax, N.S.

CANADA B3H 4H7

YOUNG INVESTIGATOR'S AWARD

The first author requests that this abstract be considered for the Young Investigator's Award. The first author certifies that the results are based on original research. Further, the first author certifies to being less than 40 years of age.

Author's Signature

Date____

._...

Left ventricular Mass Index Dalhousie Criteria

Best ECG Predictors for Males

QRS Duration
 R amplitude in V5
 S amplitude in III
 S amplitude in V4
 ST slope in V6
 Negative T depth in V5

R = 0.65

> with respect to Echo LVMI

r = 0.81

Cardiac Infarction Injury Score: An Electrocardiographic Coding Scheme for Ischemic Heart Disease

P. M. RAUTAHARJU, M.D., PH.D., J. W. WARREN, B.SC., U. JAIN, PH.D., H. K. WOLF, PH.D., AND C. L. NIELSEN, B.SC.

Cardiac Infarction Injury Score: An Electrocardiographic Coding Scheme for Ischemic Heart Disease

P. M. RAUTAHARJU, M.D., PH.D., J. W. WARREN, B.SC., U. JAIN, PH.D.,

H. K. WOLF, PH.D., AND C. L. NIELSEN, B.SC.

SUMMARY A multivariate decision-theoretic electrocardiogram (ECG) classification scheme called Cardiac Infarction Injury Score (CIIS) was developed using ECGs of 387 patients with myocardial infarction (MI) and 320 subjects without infarction. The most accurate and stable classification was achieved by using a combination of eight binary (single threshold), three ternary (two thresholds), and four ECG features measured on a continuous scale. For practical visual coding of ECGs, the CIIS coding procedure uses a checklist containing 12 items measured from the conventional 12-lead ECG.

The CIIS test results indicate that, in comparison with conventional ECG criteria for MI used in clinical trials, the diagnostic accuracy can be considerably improved by optimizing feature and threshold selection and by multivariate analysis. The CIIS detected MI with a sensitivity of 85% and a specificity of 95%. Using a higher severity level, a specificity of 99% was achieved, with a sensitivity of 71%. One of the primary uses of the CIIS is coding of significant worsening of the ECG with new coronary events from annually recorded ECGs in clinical trials and epidemiologic studies.

RELIABLE DETECTION of myocardial infarction at periodic follow-up examinations and reliable identification of the progression or regression of cardiac involvement in hypertension are major concerns in epidemiologic studies and clinical trials aimed at preventing heart disease. Although improved noninvasive techniques may replace or supplement electrocardiography in detecting and grading the severity of left ventricular hypertrophy in hypertension, the ECG remains the most important tool for detecting and classifying myocardial infarction.

The Minnesota Code¹ has become the most widely used ECG classification system in epidemiologic studies, and its application significantly improved standardization of ECG measurements. The Minnesota Code is a hierarchical, decision-tree type of ECG classifier that was developed by determining upper normal limits for univariate or bivariate distributions of selected ECG features, particularly in the design of category 1 of the code (Q, QS waves and related items). Problems are encountered with this approach if many features are used in classification criteria. When the Minnesota Code was developed, statistical computer techniques were not in general use and the criteria (features and thresholds) were selected more or less intuitively, causing two major problems: first, the feature selection and the thresholds are not optimal and the sensitivity of the criteria tends to be low; second, the use of a decision-tree structure results

From the Biophysics and Bioengineering Research Laboratory, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.

Address for correspondence: P. M. Rautaharju, M.D., Ph.D., 6th Floor, Gerard Hall, 5303 Morris Street, Dalhousie University, Halifax, Nova Scotia, B3J 1B6, Canada.

Received October 2, 1980; revision accepted November 24, 1980. Sirculation 64, No. 2, 1981. in a considerable degree of classification instability^{2. *} whereby a single error can easily result in misclassification.

The Cardiac Infarction Injury Score (CIIS) scheme was developed to improve the accuracy and stability of ECG classification in ischemic heart disease. The CIIS classifier uses a set of 11 discrete (binary and ternary) ECG features in combination with four features measured in continuum and uses a simple scoring scheme suitable for both visual and computer classification of the conventional 12-lead ECG.

Methods

ECG Data Files Used for Program Design and Testing

The data file used to design CIIS was composed of the ECGs of 387 patients with myocardial infarction and 320 subjects without clinical evidence of infarction (table 1). The criteria for infarction were based on non-ECG evidence in the acute phase, including prolonged, typical cardiac ischemic chest pain not relieved by nitroglycerin, and a peak CPK enzyme level more than 85% above the upper normal limit for the hospital. The noninfarct group consisted of 145 subjects with documented hypertension of over 1 year's duration (diastolic pressure 90 mm Hg or higher) but without any clinical evidence of myocardial infarction and 175 ostensibly healthy subjects with a normal blood pressure. The age range for the patients with myocardial infarction was 30-76 years, (median 58 years). The age range for the noninfarct group was 19-75 (median 42 years).

The source data used in ECG analysis were composed of digital tapes acquired at a sampling rate of 500 samples/sec per channel. The overall frequency band of the data acquisition system was 0.05-125 Hz (lower and upper 3 db points).

Two-thirds of the ECG data file was randomly assigned to the design (training) set and the remaining third was retained to test the accuracy of the CIIS

249

Supported in part by the Nova Scotia Heart Foundation and the Medical Research Council of Canada (SDG-2) and NHRDP grants 603-1052-45 and 6603-20-10-54. The testing of the CIIS program was performed in part pursuant to NHLBI contract 1-HV-42911.

250

 TABLE 1. Groups Used to Develop the Cardiac Infarction

 Injury Score Classifier

Groups	n	
Myocardial infarction		
Less than 1 week	151	
One week to 1 month	39	
One month to 1 year	105	
More than 1 year	92	
Total	387	
Noninfarction		
Hypertensive patients	145	
Normal subjects	175	
Total	320	

classifier (table 2). After test results were obtained on this independent test subgroup, the final refinement of the thresholds and the determination of the coefficients for the linear discriminant function were performed using the whole data file.

The repeatability of the CIIS was tested in a different group of 139 male subjects, ages 35-57 years, in whom the ECG was rerecorded within 8 weeks from the first ECG. These subjects had no clinical evidence of myocardial infarction, but about one-third of them had hypertension. These subjects were recalled for an exercise test and had no clinical events in the interim period. This test group was used to assess normal confidence limits of CIIS changes (table 3) when coding events signaling significant worsening of the ECG in serial ECG comparison.

Statistical Methods

Feature Selection

The initial set of ECG features used to develop CIIS contained a set of 32 logic criteria for myo-

Vol 64, No 2, August 1981

cardial infarction used in the Minnesota Code¹ and a supplementary set of variables listed in table 4. Initial test runs revealed, however, that both the features used and the thresholds assigned to the Minnesota Code variables were suboptimal and these features rarely, if ever, entered into the best set of 14 for the infarction vs noninfarction classifier. Therefore, the logic criteria of the Minnesota Code were rejected and the search was limited to the variables listed in table 4.

The first 10 features of table 4 were used as both discrete and continuous variables. The procedures used for feature "discretization" have been described.³ These procedures aim at optimizing the threshold selection either at binary (a single threshold) or ternary level (high and low threshold) to maximize the classification accuracy. The feature selection was done by the conventional forward sequential selection ("step-up") algorithm using the Mahalanobis distance as the optimization criterion. In instances when the binary and the ternary level "discretization" yielded equal performance, the lowest quantization level (i.e., binary) was retained.

For calculation of the Mahalanobis distance and the linear discriminant function, the Gauss-Jordan method of matrix inversion described by Orden⁶ was used with double-precision (64-bit) arithmetic.

Selection of Lead and Format for CIIS

The CIIS was designed for the conventional 12-lead ECG. For feature selection (such as the Q-wave duration), two "redundant" leads were also used: the inverted aV_R ($-aV_R$) and the inverted aV_L ($-aV_L$) lead. These inverted leads fall into a smooth, continuous logical pattern sequence within other conventional frontal plane leads.^{4, 7} The initial R wave in aV_L turned out to contain diagnostic information usually ignored by current ECG classification criteria. This information is presented in a more familiar form as a Q wave in the inverted lead $-aV_L$. Similarly, the R and

TABLE 2.	Diagnostic Accuracy of the Card	iac Infarction .	Injury Sco	re Classifier	
		Design file			Test
	CD CD	SE .	AT	60	10

		Design me			l est nie		
•	Feature set	SP (%)	SE • (%)	AI (%)	SP (%)	SE (%)	AI (%)
A .	Discrete features	90 96 98 100	95 93 82 62	85 89 80 62	87 93 95 99	93 89 82 58	80 82 77 57
B.	Continuous features	90 96 98 100	93 88 85 62	83 84 83 62	88 94 97 99	92 86 85 60	80 80 82 59
с.	Mixed discrete and continuous features	90 96 98 100	97 94 88 71	87 90 86 71	89 93 95 99	94 92 85 71	83 85 80 70

The classifier discriminant score was adjusted to yield a specificity of 90, 96, 98 and 100% in the design set.

Abbreviations: SP = specificity (fraction of correctly classified true negatives [i.e., noninfarcts]); SE = sensitivity (fraction of correctly classified true positives [i.e., infarcts]); AI = association index (SP + SE - 100).

ARIC PROTOCOL 5. Electrocardiography - Visit 4. VERSION 4.0 09/97

251

Com- ponent	Lead	Feature	Threshold	score
1	aVL	Q duration in seconds (measured to near- est threshold)	Q absent 0.010 0.020 0.030 0.040 0.050	5 1 3 9 10 12
2	aVL	T amplitude in mm If T negative add 2 points for each mm	$\leq 0.5 \text{ or}$ ≥ 3 2	3
3	-aV _R	R amplitude in mm = R (subtract 1 point for each mm)	-1	-R
4	-aV _R	T amplitude (positive phase) in mm. Sub- tract 2 additional points for each mm exceeding 4	0 1 2 3 4	630445
5	II, aV _F	Largest Q:R ampli- tude ratio	≥1/20	12
6	III, -aV _L	Largest Q duration in seconds	≥ 0.040	5.
7	III	T amplitude (negative phase) in mm	>1	5
8	V ₁	T amplitude (positive phase) in mm	>2	5
9	V ₂	R amplitude in mm	<3 or ≥14	5
10	V ₂	T amplitude (negative phase) in mm	≥¼	5
11	V3 "	Q:R amplitude ratio	>1/20	9
12	• V ₅	S amplitude in mm	<2	5

 TABLE 3. Simplified Cardiac Infarction Injury Score (CIIS)

 Classifier for Practical Visual Coding of Electrocardiograms

The amplitudes are measured in standard millimeters (1 mm = 0.1mV). Absolute values of negative amplitudes are used. The T amplitude (positive and negative phase) is measured as the absolute value of the largest deflection above and below the PR baseline in a window spanning from 80 msec after the end of QRS to the end of T (see appendix).

CIIS severity levels: level A, CIIS 20, probable injury; level B, CIIS 15, possible injury; level C, CIIS 10, borderline abnormality.

T waves in $-aV_R$ appeared to improve the diagnostic accuracy of the classifier.

In the course of the CIIS development efforts, it also became apparent that the grouping of ECG leads for the Minnesota Code and other clinical ECG classification criteria is suboptimal. The same thresholds and logic criteria are traditionally used for diverse groups of leads, such as 1, aV_L , V_e (lateral), 11, 111, aV_r (inferior) and V_1 to V_e (anterior), even though the directions of the lead vectors of the leads in each group may differ widely. In the CIIS, only ECG leads that had a spatial angle less than 20° between their lead vectors were grouped together, i.e., I and V_e , II and aV_F , III and $-aV_L$. The largest value of a given amplitude and duration in each pair was chosen for analysis. The remaining 7 leads were used individually $(aV_L, -aV_B, V_1, V_2, V_4, V_4$ and V_e).
 TABLE 4. Electrocardiographic Features used to Select

 the Best Variables for the Cardiac Infarction Injury Score

 Classifier

Features measured from 10 leads or lead sets
1. Q-wave duration
2. Q-wave amplitude
3. Q/R amplitude ratio
4. R-wave amplitude
5. S-wave amplitude
6. R/S amplitude ratio
7. J-point amplitude
8. ST amplitude 80 msec past J point
9. T-wave amplitude
10. T/R amplitude ratio
Single measurements from frontal plane leads
11. QRS frontal plane axis
12. QRS duration
13. QT/RR interval ratio

Each of the first 10 features of table 4 were measured from 10 leads or lead groups, yielding 100 features. Features 11, 12 and 13 (table 4) increased the total set of variables to 103. In the final refinement of the CIIS classifier (table 5), positive and negative portions of the T wave (whenever biphasic) were treated as separate variables to simplify the logic for visual coding.

Results

Extensive empirical studies during the development of the CIIS indicated that the best feature subsets were usually obtained when the feature selection was done on the continuous rather than the discrete features, particularly when a high level of specificity was desired.[•] Therefore, we chose the feature set for CIIS using the features listed in table 4 as continuous variables. It turned out that the discrete features chosen this way perform about as well as the continuous features (table 2). However, a further improvement at a high level of specificity is achieved by using a combination of continuous and discrete features (set C of table 2).

Table 5 gives the coefficients of the linear discriminant function for the CIIS with 15 combined discrete and continuous features. Three of the features appear both as continuous and discrete variables (1 and 10, 6 and 11, 8 and 12, respectively), because unequal, nonlinear weights in different feature regions can occasionally improve classification accuracy.

Although continuous features are usually awkward in visual ECG coding, the scoring scheme was simplified by incorporating the four continuous features within the structure of the discrete features (table 3). There are 12 steps in this scoring scheme: five involve T-wave measurements, four involve Qwave durations or Q:R amplitude ratios, two involve the R-wave amplitude and one involves the S-wave amplitude.

ARIC PROTOCOL 5. Electrocardiography - Visit 4. VERSION 4.0 09/97

CIRCULATION

Continuous Features				
Feature	Lead	Quantization level	Weight	
1. T amplitude (positive phase) (μ V)	-aV _R	Continuous	-0.0262	
2. Largest Q:R amplitude ratio	II, aV _F	Binary	$\begin{array}{ccc} 11.55 & \text{if} \ge 0.18 \\ 0 & \text{if} < 0.18 \end{array}$	
3. Q:R amplitude ratio	V ₃	Binary	8.46 if > 0.06	
4. R amplitude (µV)	-aV _R	Continuous	-0.0093	
5. Samplitude (µV)	V ₅	Binary	5.50 if < 183	
6. T amplitude (negative phase) (μ V)	aV_L	Continuous	0.0244	
7. Ramplitude	V ₂	Ternary	4.76 if < 302 or > 1398 0 otherwise	
8. Q duration (msec)	aV _L	Ternary	4.83 if 0 or≥28 0 otherwise	
9. T amplitude (negative phase) (μ V)	III	Binary	6.63 if > 98 0 otherwise	
10. Tamplitude (positive phase) (μV)	-aV _R	Binary	5.72 if <146 0 if ≥146	
11. T amplitude (positive phase) (μ V)	aV_L	Ternary	$3.10 \text{ if } \le 52$ or > 272	
12. Q duration (msec)	aV_L	Continuous	0.1330	
13. Largest Q duration (msec)	III, $-aV_L$	Binary	$\begin{array}{ll} 4.50 & \text{if} \ge 40 \\ 0 & \text{if} < 40 \end{array}$	
14. T positive amplitude (μV)	$\mathbf{v_1}$	Binary	$\begin{array}{cc} 3.91 & \text{if} \geq 240 \\ 0 & \text{if} < 240 \end{array}$	
15. T amplitude (negative phase) (μV)	V ₂	Binary	5.08 if ≥ 20 0 if < 20	

 TABLE 5. The Cardiac Infarction Injury Score Classifier with Eight Binary, Three Ternary and Four

 Continuous Features

Each discrete (binary or ternary) feature contributes to the total score according to its weight for specified ranges of feature values. The weight coefficient of a continuous feature is multiplied by its measured value and the product is added to (or subtracted from) the score. The features are listed in the order in which they were selected into the linear discriminant function in the sequential step-up procedure.

The T- and R-wave amplitudes of the inverted lead $-aV_R$ played a surprisingly prominent role in selection of features for the CIIS classifier, always ranking very high among the best features and their combinations in the linear discriminant. In table 5, the features are listed in the order they were selected to the best discriminating combination, whereas in table 3, the features are grouped according to the logical sequence of frontal and horizontal plane leads.

CIIS Severity Levels

In practical applications, it is often desirable to "discretize" the continuous index such as the CIIS at two or three levels of confidence or the likelihood of the abnormality. The severity levels for CIIS in table 3 were adjusted so that specificity levels of 90%, 96% and 98% were consistently maintained both for the design and the test sets. The validity of these limits was further investigated in 139 subjects in whom the recording was repeated within 8 weeks after the first ECG, with no evidence of coronary events in the interim period. A worsening of the CIIS exceeding 10 points was observed in 4% and a worsening exceeding 20 points in 1% of the subjects. It thus seems plausible to propose these same CIIS severity levels at least tentatively for coding of significant worsening of the ECG in serial comparison of successive annually recorded ECGs in clinical trials.

CIIS Performance According to the Age and Location of Infarct

We estimated the extent to which the accuracy of the CIIS depends on the age and the anatomic location of the infarct (table 6) and found that the age of the infarct influences the accuracy less than expected. The CIIS performs best on infarcts that are 1 week to 1 month old. However, even in patients whose infarct is more than 1 year old, the sensitivity remains at 80% for the 98% specificity level. The CIIS performance is fairly uniform for lateral, anterior and posterior locations of the infarct. As expected, the performance is worse whenever visual classification of the postevent record regarding the location was uncertain.

Figure 1 is a sample ECG tracing illustrating the CIIS coding procedure following the sequence of items in table 3. More detailed guidelines are given in appendix 1. Figure 2 is a second example of ECG features contributing to CIIS in an old infarction classified in the acute phase as posterior-diaphragmatic.

ARIC PROTOCOL 5. Electrocardiography - Visit 4. VERSION 4.0 09/97

CARDIAC INFARCTION INJURY SCORE/Rautaharju et al.

A	-	41
	1	253

		<u>,</u>
TAVL	V1V4	-AVI

		· · · · · · · · · · · · · · · · · · ·
AVF	VZ - Ppt V5	
	F	
		7
· · · · · · · · · · · · · · · · · · ·	م د م و د محمد د است : دم مصب د	na si in ann an a
		I :
V		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		1 1 1.4

Discussion

In this study, we show that the classification accuracy of the conventional 12-lead ECG can be substantially improved by improved feature selection and

 TABLE 6. The Sensitivity (%) of the Cardiac Infarction

 Injury Score According to the Age and Location of the

 Infarct

Age or location of infarct	No. of subjects	CIIS ≥ 15 (%)	CIIS ≥ 20 - (%)
Less than 1 week	102	95	85
One week to 1 month	57	100	100
One month to 1 year	109	89	80
More than 1 year	99	91	80
Lateral	23	95	90
Posterior/inferior	153	97	95
Anterior	122	98	9 5
Other*	110	75	60

*Location indeterminable from postevent records.

The age was determined from the onset of the acute phase event. The location of the infarct was judged according to the leads involved in the postevent ECG (lateral = I, \mathbf{aV}_{L} , \mathbf{V}_{6} ; posterior/inferior = II, III, \mathbf{aV}_{F} ; anterior = \mathbf{V}_{1} to \mathbf{V}_{6}). The CIIS severity levels 15 and 20 correspond to the estimated specificity of 95% and 98%, respectively.

CIIS = Cardiac Infarction Injury Score.

FIGURE 1. A sample tracing illustrating the Cardiac Infarction Injury Score. Frontal plane leads are organized to facilitate visual coding. The numbers with arrows indicate various components (table 3) that contribute to the total injury score. See appendix 1.

FIGURE 2. Features contributing to an abnormal Cardiac Infarction Injury Score in old posterodiaphragmatic myocardial infarction. A Q wave in $aV_{\rm P}$ contributes 12 points to the total score. Other contributions come from $aV_{\rm L}$ (absent Q, T less than 0.5 mm), $-aV_{\rm R}$ (flat T), $-aV_{\rm L}$ (Q greater than 40 msec), $V_{\rm L}$ (positive T), $V_{\rm L}$ (R amplitude 14 mm) and $V_{\rm L}$ (S amplitude less than 2 mm). The amplitude and time scales have been expanded (1 mV = 20 mm and 1 second = 50 mm).

proper optimization of the thresholds of discrete features. The results show that there are ECG features with important diagnostic information for detection of MI that are usually not used in conventional MI criteria. Among these new features are small R and a tall T wave in the inverted aV_R lead, an absent Q in aV_L , a large T or a negative T in aV_L , a negative T in III, a positive T in V_1 and a missing S wave in V_s . The relative contribution to CIIS by these features from different leads probably depends on the location of the injury, but should be studied further.

The CIIS differs fundamentally from other classification schemes currently used in epidemiologic and clinical applications. Most ECG criteria for myocardial infarction, such as those contained in the Minnesota Code¹ or the IBM ECG analysis program developed by Bonner et al.,¹⁰ are based on a sequential, Boolean-type decision tree. Such classification schemes have become popular probably because they are simple, and can be easily learned and adapted to visual coding of ECGs.¹¹ Optimization of a decisiontree classifier is a difficult statistical problem^{12, 13} and unquestionably, the Minnesota Code and other current ECG coding systems are far from optimal.

Like the Minnesota Code, the CIIS scheme uses a set of binary and ternary criteria that can be applied in succession step by step. However, unlike the 254

VOL 64, NO 2, AUGUST 1981

Minnesota Code, the CIIS scheme is not based on a "yes/no" decision at any given node of the decision tree. Instead the outcome of each decision contributes in a weighted proportion to the final score. This decision-theoretic approach improves classification stability. In test runs reported earlier,^a incorrect representation of one feature resulted in a change in infarct/noninfarct classification on the average in slightly over 10% of the records. In contrast, one error at any node of a decision-tree classifier can easily lead to a complete misclassification.²

Unlike the commonly used decision-tree ECG classifiers, which tend to favor unconditional yes/no and infarct/noninfarct outcomes from classification, the CIIS expresses the likelihood of an infarction on a continuous scale. The continuous distributions of CIIS in each study group can improve the statistical power of detecting differential trends in study populations, for instance, between treatment groups in clinical heart disease intervention and prevention trials. To simplify the use of CIIS, it may be helpful in many practical applications to use the discrete features of CIIS (table 3), which also apply for changes of CIIS in case of serial comparison of annual ECGs.

The CIIS belongs to a family of statistical classifiers sometimes characterized as decisiontheoretic. The best known decision-theoretic ECG classification program is the Bayesian-type multivariate program developed by Pipberger et al.¹⁴ for Frank-lead ECG. The decision-theoretic classifiers, sometimes called second-generation ECG programs,¹⁶ have not gained widespread acceptance for a variety of reasons, even though theoretically they should improve the accuracy of classification.¹⁶ Unquestionably, the unfamiliarity of potential users with the Franklead system and the vectorcardiographic features used has delayed the acceptance of the second-generation ECG programs. Conceptual difficulties encountered by the uninitiated with the probabilistic Bayesian statistical approach have confounded these problems, particularly regarding proper use of prior probabilities, which is mandatory for optimal classification. The CIIS coding system combines the simplicity of the first-generation ECG classification schemes with the statistical power and stability achieved by the second-generation ECG programs. These advantages should facilitate the use and acceptance of CIIS.

The grouping of ECG leads in the CIIS scheme differs substantially from that in the Minnesota Code. The Minnesota Code has three groups of leads: I, aV_L and V_s , II. III and aV_F , and V_1 to V_s . We found that the statistical distributions of durations and amplitudes of many ECG features could be considerably narrowed both in the infarct and noninfarct groups by avoiding combinations of leads that differ widely in the orientation and strength of their lead vectors.

The diagnostic accuracy of a classification system depends on the prevalence of infarcts in the population.³⁷ Two groups of investigators can reach marked!y different conclusions on diagnostic accuracy of a classifier even when both groups use identical criteria to select their test groups. This apparent paradox can occur if there are large prevalence differences in the populations from which the test groups are chosen.¹⁸

For a Bayesian-type second-generation computer-ECG program, the classification accuracy can be maximized by matching the prior probabilities to the expected prevalence of different conditions in the specific population in which the classifier is used. With the CIIS scheme, an equivalent adjustment is achieved by the use of graded severity levels. In clinical populations with a high prevalence of infarcts, a CIIS level of 10 acceptably classifies a given record as an infarct, whereas in populations with a very low prevalence of infarcts, a CIIS level of 20 or higher score would be more appropriate.

An 85% sensitivity for detecting myocardial infarctions in the test group with 95% specificity (i.e., 5% false positives) and a 71% sensitivity with 99% specificity is an encouraging sign of the practicality of the CIIS.

We included the hypertensive patients with the normal subjects in the pooled noninfarct group because hypertensive subjects are an important subgroup in many clinical trials and epidemiologic studies. Hypertensive subjects frequently have ECG changes that may considerably complicate the design of a classifier with high specificity and adequate sensitivity. The performance of a classifier designed only to separate normal subjects from patients with infarcts is unrealistic and misleading in a practical application.

It is not possible from the present study to determine how well the CIIS can identify the anatomic location of the infarct, because no ECG-independent data on the location were available from the acute phase. The division into three groups according to the location was made arbitrarily from the postevent rather than from the acute phase record. An investigation is needed to examine how the different CIIS components from different leads or lead groups can best be used to identify the location of the infarct.

Changing electrocardiographic recording technology can significantly alter the validity of any ECG criteria for myocardial infarction; for instance, by altering the width of the baseline of paper tracings used for visual ECG coding.¹⁹ This fact must be considered when using the CIIS scheme, even though it should prove relatively resistant to minor aberrations in the fidelity or quality of the records.

Appendix 1 presents detailed practical considerations regarding the definitions, measurement and coding rules for CIIS. Perhaps the most significant departure from the Minnesota Code is that the amplitude threshold for "codable" waves is 25 μ V instead of 100 μ V. The measurement rules for CIIS call for a systematic use of the majority rule when beat-to-beat deviations are observed in the quantities measured. In computer-based coding, a representative complex derived on the basis of selective averaging or a median value of the values measured from normally conducted complexes offers an effective alternative.

All amplitude measurements for CIIS are per-

formed with respect to the PR baseline. The scoring criteria may not be valid if TP baseline is used. In our experience, there are many ambiguities in the Minnesota Code definitions for ST- and T-wave measurements. To avoid these logistic problems in ECG coding, the CIIS defines T-wave amplitudes, for its positive and negative phase, as the absolute values of the largest positive and negative deflections in a window extending from 80 msec after the end of QRS to the end of T. This definition is easy to implement for visual and computer coding, and reflects the contribution of ST to the CIIS in the acute phase of infarction when the distinction between ST and T becomes obscure.

The CIIS coding scheme is being evaluated in several large clinical trials to determine its prognostic value and its value in detecting differential trends in treatment groups as a quantitative measure of the effectiveness of intervention. Initial test runs with the visual CIIS coding scheme indicate that with relatively little practice, a technician can code more than 20 ECGs an hour by using a printed coding sheet containing a checklist of CIIS items.

Acknowledgment

The authors thank Dr. F. Bonjer, C. Tuinstra and Professor A. C. Arntzenius, Department of Cardiology, Leiden University; Professor F. Mejler, Department of Cardiology, University of Utrecht; Dr. H. Ritsema van Eck and Professor P. Hugenholtz, Thorax Center, Erasmus University, Rotterdam and Dr. R. Prineas, Laboratory of Physiological Hygiene, School of Public Health, University of Minnesota, Minneapolis for their support and valuable criticism.

References

- 1. Blackburn H, Keys A, Simonson E, Rautaharju PM, Punsar S: The electrocardiogram in population studies. A classification system. Circulation 21: 1160, 1960
- Rautaharju PM: Use and abuse of electrocardiographic classification systems in epidemiologic studies. Eur J Cardiol 8: 155, 1978
- 3. Jain U, Rautaharju PM, Horacek BM: The stability of decision theoretic electrocardiographic classifiers based on the use of discretized features. Comput Biomed Res 13: 695, 1980
- 4. Mahalanobis PC: On the generalized distance in statistics. Proc Nat Inst Sci (India) 12: 49, 1936
- Orden A: Matrix inversion and related topics by direct methods. In Mathematical Methods for Digital Computers 1, edited by Ralston A, Wilf HS. New York, Wiley, 1967, p 39
- 6. Case RB, Tansey WA and Mostader AH: A sequential angular lead presentation. J Electrocardiol 12: 395, 1979
- 7. Zao ZZ: Directional sequence of limb leads and the lead circle. . (editorial) J Electrocardiol 12: 437, 1979
- Jain U, Rautaharju PM, Warren J, Wolf HK, Horacek BM: Selection of optimal features for classification of electrocardiograms. J Electrocardiol 14: 1981. In press
- Jain U, Rautaharju PM: Diagnostic accuracy of the conventional 12-lead and the orthogonal Frank-lead electrocardiograms in detection of myocardial infarctions with classifiers using continuous and Bernoulli features. J Electrocardiol 13: 159, 1980
- Bonner RE, Crevasse L, Ferrer MI, Greenfield JC Jr: A new computer program for analysis of scalar electrocardiograms. Comput Biomed Res 5: 629, 1972
- Bailey JJ, Horton MR: Advantages of automation of ECG analysis with conventional (heuristic) criteria. In Trends in Computer Processed Electrocardiograms, edited by van Bemmel JH, Willems JL. New York, Elsevier, 1977, p 221

- Fu KS, Swain PH: On syntactic pattern recognition. In Software Engineering 2, edited by Tou JT. New York, Academic Press, 1971, p 155
 Kulkarni AV: Optimal and Heuristic Synthesis of Hierarchical
- Kulkarni AV: Optimal and Heuristic Synthesis of Hierarchical Classifiers. Thesis, University of Maryland, 1976
- Cornfield J, Dunn RA, Batchlor CD, Pipberger HV: Multigroup diagnosis of electrocardiograms. Comput Biomed Res 6: 97, 1973
- Pipberger HV, Bialek SM, Perloff JK, Schnaper HW: Correlation of clinical information in the standard 12-lead ECG and in a corrected orthogonal 3-lead ECG. Am Heart J 61: 34, 1961
- Eddleman EE Jr, Pipberger HV: Computer analysis of the orthogonal electrocardiogram and vectorcardiogram in 1,002 patients with myocardial infarction. Am Heart J 81: 608, 1971
- Rautaharju PM, Blackburn HW, Warren JW: The concepts of sensitivity, specificity, and accuracy in evaluation of electrocardiographic, vectorcardiographic and polarcardiographic criteria. J Electrocardiol 9: 275, 1976
- Rautaharju PM, Smets P: Evaluation of computer-ECG programs. The strange case of the golden standard. Comput Biomed Res 12: 39, 1979
- Rautaharju PM, Seale D, Prineas R, Wolf HK, Crow R, Warren JW: Changing electrocardiographic recording technology and diagnostic accuracy of myocardial infarction criteria. Improved standards for evaluation of ECG measurement precision. J Electrocardiol 11: 321, 1978
- 20. Pipberger H, Arzbaecher RC, Berson AS, Briller SA, Geselowitz DB, Horan LG, Rautaharju PM, Schmitt OH: Amendment of recommendations for standardization of specifications for instruments in electrocardiography and vectorcardiography (1), concerning safety and electrical shock hazards. Report of Committee on Electrocardiography. American Heart Association. Circulation 35: 583, 1967
- Rose GA, Blackburn H: Cardiovascular Survey Methods. Geneva, World Health Organization, 1968, p 142
 Wolf H, MacInnis PJ, Stock S, Helppi RK, Rautaharju PM:
- 22. Wolf H, MacInnis PJ, Stock S, Helppi RK, Rautaharju PM: The Dalhousie Program: a comprehensive analysis program for rest and exercise electrocardiograms. *In Computer Application On ECG and VCG Analysis, edited by Zywietz C, Schneider B.* Amsterdam, North-Holland Publishing Co, 1973, p 231

Appendix

Measurement and Coding Guidelines for the Cardiac Infarction Injury Score

General Considerations

The writing characteristics of the direct-writing electrocardiograph can substantially influence electrocardiographic measurements.¹⁹ Of particular concern is the baseline width with pressurized ink recorders, which can produce a bias in ECG wave durations. The baseline width produced by a round recording stylus of uniform thickness should be less than 0.2 mm if a paper speed of 50 m/sec is used.¹⁰ The electrocardiograph should meet the minimal specifications established by the ECG committee of the American Heart Association.²⁰

The measurement and coding rules specified here differ from commonly used conventions such as those established for the Minnesota Code.^{4, 51} For C11S, "codable" waves are defined using a higher resolution than in the past. In general, a wave with an amplitude 25 μ V (0.025 mV) or more is recognized as a codable wave. Microprocessors and computers are increasingly used for ECG acquisition and preprocessing and it would be feasible to provide, even for visual coding, a display format with much better resolution than 25 μ V. However, because the standardization of the voltage scale at 10 mm for 1 mV is still common practice, the 25- μ V threshold corresponding to K mm on the conventional ECG scale seems a practical compromise at this time.

Another difference is that the CIIS scheme follows the majority rule with exceptions. Complexes with artifacts or excessive noise interfering with measurement are omitted from consideration regarding the majority rule. If computer preprocessing or totally automated processing facilities are available, a suitable alternative for the majority rule is the use of the median value of measurements done on a beat-by-beat basis, or a representative averaged

255

256

complex derived after clustering of all complexes found for a given lead or lead group, followed by alignment and selective averaging of complexes.²⁸

The CIIS coding scheme is not hierarchical like the Minnesota Code. This implies that each of the 15 components of the CIIS is evaluated separately and independently. All ECG interval measurements and identification of time reference points, such as the beginning and the end of the QRS complex, should be performed from at least three simultaneously recorded, time-coherent ECGs.

Definition of Codable Waves

The reference potential or the *baseline* for all amplitude measurements without exception is the PR segment immediately preceding the earliest part of the QRS complex.

First wave within the QRS complex is the earliest deflection, positive or negative, 25 μ V or more in amplitude regardless of its duration.

The first wave is an *initial R wave* if it is positive, and a Q wave if it is negative. (For CIIS coding, no distinction is made between Q and QS waves).

Second wave within QRS is a deflection exceeding 25 μ V in amplitude with a sign opposite to that of the first wave within QRS. Subsequent waves within QRS, positive and negative, with alternating signs, are defined similarly.

R amplitude is the amplitude of the highest positive wave within QRS.

S amplitude is the absolute value of the most negative wave within the QRS after an R wave.

QR ratio is measured as the ratio of the absolute amplitudes of Q and R waves. A pattern with a QS wave is considered to have an infinite OR ratio.

J amplitude is the signed value of the ST segment at the end of the QRS complex.

ST amplitude is the signed value of the ST segment 80 msec past the end of the QRS complex.

Positive T amplitude is the highest amplitude of the positive portion of the ST-T complex measured in the window extending from 80 msec past the J point to the end of the T wave.

Negative T amplitude is the absolute value of the most negative part of the ST-T complex measured in the window 80 msec past the J point to the end of the T wave.

The sample tracing in figure 1 illustrates various steps involved in CIIS following the sequence given in table 3.

(1) Q wave duration in lead $aV_{\rm L}$. Measure Q wave duration to nearest 10 msec. In this record, the Q duration is 20 msec. Check 3 points on the coding form of table 3. The absence of the Q wave in $aV_{\rm L}$ scores 5 points (i.e., no initial negative deflection 4 mm or more in amplitude.

Vol 64, No 2, August 1981

(2) T-wave amplitude in aV_L . Three points are added to the score if no positive portion of the T wave is 0.5 mm or more or if any portion of the T wave is 3 mm or more. The time window for measurement of T amplitude extends from 80 msec past the end of QRS (4 mm at a paper speed of 50 mm/second) to the end of the T wave. In the sample tracing (fig. 1), the T wave is flat, i.e., less than 0.5 mm. The score is 3 points. (If the T in aV_L were negative, 2 more points would be added to the score for each millimeter of negative amplitude.)

(3) R amplitude in the inverted aV_{R} lead. In the conventional aV_{R} lead, this item can be measured as the amplitude of the most negative deflection within QRS complex (a Q, S or QS wave). One point is subtracted for each millimeter of R-wave amplitude in the inverted aV_{R} lead ($-aV_{R}$) in our sample tracing the R wave is 10 mm, and 10 points are subtracted for m the score.

(4) T amplitude (positive phase) in $-aV_R$. A flat or small T wave in $-aV_R$ lead adds to the score and a tail T wave subtracts from the score. In our case, the most positive deflection in the T window is clearly less than 0.5 mm, and six points are added. If the conventional (noninverted) aV_R lead is used, the absolute amplitude of the negative portion of the T wave is measured under this item.

(5) Q:S amplitude ratio in leads 11 and $aV_{\rm P}$. A Q wave 5% or more of the R wave in either lead adds 12 points to the score. In our sample record, the R wave is clearly less than 20 times the Q-wave amplitude. Score 12 points.

(5) Q-wave duration in leads III and $-aV_{\perp}$. A 40-msec or larger Q wave in either lead scores 5 points. The initial R wave (4 mm or more) in the lead aV_{\perp} is identical to the Q wave in the $-aV_{\perp}$ lead. There is no Q wave in lead III and there is no initial R wave in aV_{\perp} , so no points are scored.

(7) *T*-wave amplitude in lead III. If any portion of the T-wave measurement window is more negative than 1 mm, 5 points are scored. In figure 1, no points can be attributed to this item.

(8) T amplitude in lead V_1 . A positive portion of the T wave (at any point 80 msec past the end of QRS) exceeding 2 mm adds 5 points to the score.

(9) R amplitude in lead V_{3} . A small or absent R wave (<3 mm) or a tall R wave (>14 mm) contributes 5 points. In figure 1 there is a QS in lead V_{3} , which adds 5 points.

QS in lead V_s , which adds 5 points. (10) T amplitude in lead V_s . Any negative T-wave segment contributes 5 points. In figure 1 there is a biphasic (positive/negative) T wave in lead V_s . However, the negative portion is less than 4 mm with respect to the PR baseline, so no points are scored.

(11) Q:R amplitude ratio in lead V_{b} . A QS wave, or a Q wave 1/20 of the R wave, scores 9 points, as in figure 1.

(12) S amplitude in lead V_{\bullet} . A small (<2 mm) or absent S wave in lead V_{\bullet} scores 5 points. The S amplitude in lead V_{\bullet} is clearly less than 2 mm in figure 1 and scores 5 points.

The total score from all 12 components is 38 points (48 positive and 10 negative points), and falls into CIIS severity level A.
Myocardial Infarction Injury Score

Pentti M. Rautaharju, M.D.

Professor of Physiology and Biophysics Dalhousie University Director, Heart Disease Research Centre Halifax Infirmary Halifax, Nova Scotia

Evidence of past myocardial infarction is helpful in identifying patients at high risk for future heart attack. Current criteria are insensitive, especially if the MI is not extensive or transmural: ECG changes observed may be only nonspecific. In addition, a considerable portion of MIs may be clinically silent. The CARDIAC INFARCTION IN-JURY SCORE offers a new quantitative way of extracting diagnostic information that is often overlooked in ECG interpretation. A simple ECG coding form can determine the likelihood of MI or a significant "worsening" of the ECG in serial ECG comparison. This approach improves the sensitivity of MI detection while retaining adequately high specificity.

The poor reliability of clinical criteria for myocardial infarction (MI) is due to several conditions (Table 1). The electrocardiogram is a fairly complex multidimensional time function of electric potential differences. This poses conceptual problems, as for example in the selection of an optimal set of ECG features for differential diagnosis.

Most physicians feel more comfortable dealing with univariate or bivariate distributions of ECG measurements from contrasting MI and non-MI populations. This, perhaps, is the primary reason why many MI criteria are based on thresholds set for univariate distributions such as the Q-wave duration in lead III or aVF.

Unfortunately there is nearly always a substantial degree of overlap when univariate features are used for ECG classification. There are too many false negatives or false positives, or both, depending on threshold selection.

Despite recent advances in statistical and computer methods, the selection of optimal features for ECG classification remains a complicated statistical problem. The ostensibly trivial task of optimal threshold selection when several ECG features or variables are used simultaneously in an ECG classifier can also present difficulties.

When ECG classification is based on a single "yes or no" decision (or a few sequential steps), one relatively small measurement error may lead to misclassification. Similarly, a small degree of biologic or technical varia-

Primary Cardiology June 1983

tion, such as electrode placement errors, can radically influence the ECG classification.

FAST TAKE

Misclassification: When ECG classification is based on a few sequential steps or there is some degree of biologic or technical variation (e.g., error in electrode placement), misclassification can easily result. Infarctions in areas that do not involve the initial sequence of ventricular excitation are often missed because MI has traditionally been diagnosed by looking for Q waves.

Finally, because MI has traditionally been diagnosed by looking for Q waves, infarctions in areas that do not involve the initial sequence of ventricular excitation tend to be missed. The Cardiac Infarction Injury Score (CIIS) offers a new way of quantifying "non-specific" diagnostic information that is often overlooked in clinical ECG interpretation.

The CIIS ECG Classifier

The CIIS classifier was developed from a data file containing the ECGs of 387 MI patients and 320 persons without infarction. Selection criteria for the MI group, Continued on page 179

Table 1

Problems with Current MI Criteria

Mainly insensitive univariate features

Large overlap of MI, non-MI populations

Suboptimal thresholds

Overemphasis on Q waves

Vulnerable to biological and technical variation.

Table 2

Valuable ECG Features often Overlooked in Diagnostic Interpretation

Absent Q wave in aVL

Initial R-wave duration in aVL

Small S in aVR (or small R in inverted aVR)

Negative T in III

Positive T in V,

Tall R in V,

Small S in V, and V,

Fig. 1. A sample ECG for practice coding using the CIIS coding form in Table 3. The amplitude scale is expanded (20 mm = 1 mV) and the speed is 50 mm/sec. *Note:* -aVR is the inverted aVR and -aVL is the inverted aVL lead.

Primary Cardiology June 198:

.

.

CIIS Cooing	Form		·	Limits	Score	÷			11-14-		
Component	Feature		0	.01	.02	.03	.04	.05	Units	Score	•
1	Q aVL S	icore	5		Ц 3	9	10	12	Sec		
2a _	T Pos aVL S	core				≤.5 □ 3		≥ 3 . [] 3	mm .		
25	T Neg aVL S	core	.5 	1 2	2 [] 5	3 [] 7	4	5 [] 12	mm .	. <u></u>	
3	R – aVR S	core		2 [] -2	4	6 [] -6	8 [] -8	10 	mm		
4	T Pos – aVR S	i icore	0 		2	3 [] -2	4 [] -5	5 -7	mm		
5	Q:R II, aVF	Score	•	• .		<% [] 0		≥ % □ 12			
6	Q ili. – aVL	Score				<.04	•	≥ .04 □ 5	sec		
7	T Neg III	Score				<1 0		≥1 □ 7	mm		
8	T Pos V,	Score				≤ 2 □ 0		>2 [] 4	៣៣		•
9	RV,	Score				<3 [] 5		≥ 14 □ 5	шщ		
10	T Neg V,	Score				<% □ 0		≥ % □ 5	ጠጠ		
· 11	Q:R V,	Score			_	≤ % [] 0		>% 9	•		
12	S Vs	5			•	≥ 2 □		<2 []	'nm	•	

Definitions and CIIS coding rules

- 1. All amplitude measurements are made with respect to PR baseline at the beginning of QRS.
- 2. Q wave: Initial QRS deflection exceeding ¼ mm if it is negative.
- 3. R wave: Largest positive deflection within QRS exceeding ¼ mm. If no R wave meets this definition, QRS is labeled QS wave.

4. For CIIS coding, QS qualifies for a Q wave.

- 5. S wave: Largest negative deflection within ORS, following a positive deflection exceeding ¼ mm.
 6. T Pos: Largest positive ST-T amplitude within a
 - window 80 msec past the end of ORS to the end of T.

Severily Levels of the MI Score The MI score is classified at three levels of the likelihood of an MI:

1. Level A: MI score 20 or more, indicates probable injury, with an estimated specificity of 98 per cent (i.e., 2 per cent false positives expected).

2. Level B: MI score 15 or more but less than 20, indicates possible injury, with an estimated specificity of 96 per cent.

3. Level C: MI score 10 or more but less than 15, indicates a borderline abnormality, with 90 per cent specificity.

The CIIS Scoring Procedure

The ECG in Fig. 1 is used here to illustrate the CIIS coding form shown in Table 3. Note that the amplitude scale has been expanded two-fold (i.e., 20 mm = 1 mV). The paper speed is 50 mm/sec. One averaged complex is shown for each lead. The leads have been grouped for convenience to follow the sequence of the 12-step procedure. This sequence also follows the logical order of the orientation of lead vectors in the frontal plane from aVL through III. Note that the inverted lead aVR (- aVR) falls between leads I and II.

Step 1. Q in aVL is absent. Score 5 points.

Step 2a. T Pos aVL: The largest positive STT amplitude is less than 0.5 standardized mm. Score 3 points.

Step 2b. T Neg aVL: The largest negative STT amplitude is 0.5 standardized mm. Score 1 point.__

Step 3. R - aVR: R in inverted aVR is 2.5 standardized mm. This is closer to 2 than 4 mm, and the score is -2. Subtract 2 points from the total score.

Step 4. T Pos – aVR: The largest positive amplitude in Inverted aVR is 0. Score 6 points.

Step 5. . Q:R II, aVF: Largest Q:R ratio in II

7. T Neg: Largest negative ST-T amplitude within a within a window 80 msec past the end of ORS to the end of T.

8. -aVR lead: Inverted unipolar aVR lead.

9. R -aVR: R amplitude in inverted aVR. This is equivalent to a Q, S, or OS amplitude in ordinary aVR, whichever is largest. and aVF. There is a Q wave in both leads. Although exact amplitude measurement may be difficult to read in Fig. 1, the Q:R amplitude ratio measured from the original ECG is %. This exceeds the limit %. Score 12 points.

Step 6. QIII, – aVL: There is a QS wave in III and inverted aVL, both exceeding 40 msec. Score 5 points.

Step 7. T Neg III: There is no negative STT deflection in III exceeding 1 mm. Score 0.

Step 8. T Pos V: There is a positive T wave In V₁. However, the largest positive STT amplitude is 1.5 standardized mm, which is less than the 2 mm limit given. Score 0.

Step 9. RV₂: R amplitude in V₂ about 5 standardized mm, which is more than 3 and less than 14 mm, the abnormal limits given. Score 0.

Step 10. T Neg V₂: There is no negative STT amplitude in V₂ exceeding V₄ mm. Score 0.

Step 11. Q:R V₃: The Q wave in V₃ is over 0.5 mm and the R wave is 10 mm. Q:R ratio exceeds V₂₀. Score 9 points.

Step 12. SV₃: S-wave amplitude in V₃ is 1 standardized mm. This is less than the 2 mm limit given. Score 5 points.

The total score is 44 points, which is far in excess of the limit 20, or CIIS level A, probable injury. ECG changes are relatively minor, with the exception of slightly negative T waves in the left-sided leads and QS in V, with 1 mm ST-segment elevation. There are no diagnostic Q waves.

The patient died from a massive acute recurrent infarction 3 weeks after the ECG was taken. This was confirmed on autopsy, which also showed a recent nontransmural septal infarction and a small right ventricular aneurysm in the anterior wall near the border of the left ventricle. This old septal infarction probably is associated with the typical enzyme changes that peaked 2 days after the ECG in Fig. 1 was recorded.

- 10. T pos -aVR: T pos amplitude in inverted aVR. This is equal to T neg amplitude in ordinary aVR.
- 11. -aVL lead: Inverted unipolar aVL.
- 12. Q -aVL: Q duration in inverted aVL. This is equivalent to initial R-wave duration in ordinary aVL.
- 13. Absolute values of negative waves are used for the limits of criteria in Table 3.

Continued on page 179

Primary Cardiology June 1983

ARIC PROTOCOL 5. Electrocardiography - Visit 4 VERSION 4.0 09/97

175

Appendix L

Continued from page 172

seen at the Halifax Infirmary, were based on non-ECG clinical evidence in the acute phase, including a peak CPK enzyme level more than 85 per cent above the upper limit of normal. The non-MI group consisted of 145 subjects with sustained hypertension, but no clinical evidence of MI, and 175 healthy subjects with normal blood pressure.

The procedures used involved optimization of thresholds for each variable, and an extensive search for the best combination of variables for a linear discriminant type ECG classifier. Whether any given variable was more suitable for MI classification as a continuous variable (e.g., T amplitude) or a discrete variable with one or two thresholds (e.g., R amplitude in $V_2 < 3$ mm or > 14 mm) was also determined. The specific statistical methods used are described in detail elsewhere (Circulation 64:249, 1981).

"Hidden" Diagnostic Information

In the course of CIIS development, it has become obvious that an abundance of usually ignored diagnostic information is contained in the 12-lead ECG (Table 2). Lead aVR, for instance, contributed significantly to MI detection. Although this may seem implausible at first, if the inverted aVR is seen as a lead between leads I and II in the frontal plane, it can be readily understood that a reduced R amplitude and a flat T wave in that lead is indeed relevant in separating MIs from non-MIs.

FAST TAKE _

The 12-Lead ECG: An abundance of diagnostic Information is contained in the 12-lead ECG. MI detection is significantly enhanced by lead aVR: a reduced R amplitude and a flat T wave in this lead can help discriminate between MIs and non-MIs.

A Q wave in an inverted aVL lead also contributes information, as do other inferiorly oriented leads. This information can be extracted from an ordinary aVL lead by measuring the initial R wave duration.

MI Scoring Procedure

Cardiac infarction scoring requires 12 observations on 9 leads (Table 3). At each step, the observer verifies whether a given feature is present and then checks to see if a given threshold (or thresholds) is exceeded; if so, the appropriate box is marked on the coding sheet.

Three of the items on the criteria list in Table 3, components 2b, 3, and 4, use measurements on a continuous rather than a discretized scale, and the scoring points depend on the measured value. For convenience,

Desig	n File	Test File		
Specificity (%)	Sensitivity (%)	Specificity (%)	Sensitivity (%)	
90	97	89	94	
96	94	93	92	
98	88	95	85	
100	71	99	71	

these continuous variables were discrete at six levels, permitting enough accuracy for practical clinical application. After checking all 12 ECG features individually, the total MI score is obtained by adding up the contributions of each component.

A relatively small subset of the features is usually abnormal and may be readily identified after one becomes familiar with the features and thresholds used. It is still recommended, however, that the 12-step sequence be followed systematically to reduce the chance of human error in ECG coding and interpretation.

FAST TAKE _

MI Scoring involves 12 observations on 9 leads. The presence or absence of a given feature is verified at each step and threshold measurements are checked. . The MI score is made up of the sum of the individual components. The 12-step sequence should be followed systematically to avoid possible errors in ECG coding and interpretation.

c .

CIIS Diagnostic Accuracy

One-third of the ECG data file mentioned earlier was randomly chosen to test the diagnostic accuracy of the CIIS classifier. This file was not used in designing the classifier in order to avoid overestimating its accuracy. Table 4 lists the per cent sensitivity of the CIIS in the design and test files at various levels of specificity. Performance evaluation in various subsets of the test population suggests that CIIS accuracy is good and relatively uniform regardless of the age and location of the infarct.

Primary Cardiology June 1983

Table 3. NOVACODE Serial ECG Classification Codes

Hierarchic mutually exclusive classification categories for serial ECG changes. ECG classification proceeds in steps A to I below and is completed as soon as the criteria in any category are met. Decision boundaries for various categories are illustrated in Fig. 1.

CODE: DEFINITION:

- A. Serial change uncodable
 - A.1 Follow-up or acute event ECGs not available
 - A.2 Quality inadequate for serial coding
 - A.3 Suppression code present
 - A.3.1 WPW (MC 6.4.1) or artificial pacemaker (MC 6.8) in reference ECG
 - A.3.2 WPW (MC 6.4.1) or artificial pacemaker (MC 6.8) present in all follow-up or acute event ECGs
 - A.3.3 Serial change uncodable due to ventricular conduction defect in reference ECG
- B. New ventricular conduction defect (VCD)
 - B.1 New LBBB $\triangle QRS$ dur > 20 mSec.
 - B.2 New RBBB $\triangle QRS$ dur > 20 mSec.
 - B.3 New IVCD (VCD, indeterminate type), AQRS dur > 20 mSec.
 - B.4 New VCD pattern, AQRS dur < 20 mSec.
- C. New MI (Q-wave MI, C1, C2)
 - C.1 Major Q-wave evolution
 - C.2 Minor Q-wave evolution with evolving ST-T
 - C.3 Minor Q-wave evolution without evolving ST-T
- D. Evolving profound ST-T abnormalities (non-Q-wave MI for acute events)
- E. Evolving major ST-T abnormalities with non-evolving Q-QS waves
- F. Evolving major ST-T abnormalities without significant Q-QS waves
- G. Non-evolving Q, QS waves
- H. Non-evolving ST-T abnormalities
 - H.1 Non-evolving major ST-T abnormalities
 - H.2 Non-evolving minor ST-T abnormalities
- I. No significant Q-QS or ST-T abnormalities or serial changes

		Q, QS Evol Q, QS	Non- ving Score	Q, QS E Q, QS Incr	volving Score ease	Serial Change Uncodable		
		s < 15	S ≥ 15	∆ <u>S</u> ≥ 15	∆ <u>S</u> ≥ 25	New VCD	Suppres- sion Code Present	
ST-T Non- Evolving	S < 10	I	G3			B1 LBBB	A1	
	S ≥ 10	H2	G2	С3		B2 RBBB	A2	
********	S ≥ 20	Hl	Gl		C1	B3 IVCD	A31	
ST-T Evolving	Delta S \geq 20	F	Е	C2		B4 VCD ΔQRS<20	A32	
	Delta S \geq 30]	D				A33	

Appendix M

.

.

ID#]	RECORD	******				
ACROSTIC ECG DATE	 TECH#	* STUDY ETC * SHIP	VISIT 003 LOT			
DATE CODED	CODER#	_ * WS	****			
WAVE						
HEART RATE SUPP8 per minute	VEND.CC	OND.DEFECT AV 7XX)	COND.DEFECT (6XX)			
······	-					
Q & QS PATTERNS (1XX) I AVL 2 3 V1	ST & T WAVE	$\begin{array}{ccc} \text{ITEMS} & (4XX/5X) \\ 3 & 2 & 3 & 1 & 1 \\ \end{array}$	ST SEGMENT ELEV			
V6 F V5	V6 V6	F F V5 V5	V6 F V5			
	·····		<u> </u>			
R (3X) MISCELLANEO 1X 3X	DUS (9X) TECHNIC 5X PROBLI 98X	CAL CLEAR EM 1.0				
			CONTINUE			

.

.

Appendix N

,

Comparison Rules for Simultaneously Evaluated ECGs

Event ECG Minnesota Q-Code	Code	Comparison Rule for Determining Significant Increase in ECG Pattern
1-1-1	Requires <u>></u> 50% wave amplitude lead(s) of bas	increase in event Q/R ratio or \geq 1 mm initial R- decrease in event ECG compared with corresponding eline ECG.
1-1-2	Requires > 50% R-wave amplitu lead(s) of bas appearance of not show a cha criteria must amplitude decr compared with	increase in event ECG Q/R ratio or \geq 1.0 mm initial de decrease in event ECG compared with corresponding eline ECG. If the code occurred in V1, then the a new Q/S pattern in V2, V3, V4 or V5 when V1 does nge is also considered a significant change. This be accompanied by a \geq 1 mm average initial R-wave ease in the corresponding lead of the follow-up ECG the baseline ECG.
1-1-3	Requires > 50% mm initial R-w compared with	increase in lead aVL Q/R ratio of event ECG of \geq 1 ave amplitude decrease in lead aVL of event ECG lead aVL of baseline ECG.
1-1-4	Requires > 50% mm initial R-w compared with baseline, the	increase in lead III Q/R ratio of event ECG of ≥ 1 ave amplitude decrease in lead III of event ECG lead III of baseline ECG. In lead AVF of the majority of beats must have Q-wave < 1 mm.
1-1-5	Requires \geq 50% mm initial R-w compared with	increase in lead aVF Q/R ratio of event ECG or ≥ 1 ave amplitude decrease in lead aVF of event ECG lead aVF of baseline ECG.
1-1-6	Requires > 1 m follow-up ECG the QS pattern same lead on t V2, V3, V4, V5 chosen lead on significant in	m average initial R-wave amplitude decrease in compared with baseline ECG. Determine in which lead for the 116 occured on the follow-up ECG. Use the he baseline ECG to make the comparison, either lead or V6. The average initial R-wave height from the the baseline ECG must be ≥ 1 mm to be considered a crease.
1-1-7	Requires > 1 m corresponding with > 1 mm de significant in	m decrease in event ECG initial R-wave compared with lead(s) of baseline ECG. If V5 is the only lead crease in initial R in event, there is no crease (use V4 or V5).
1-2-1	Requires <u>></u> 50% R-wave amplitu lead(s) of bas	increase in event ECG Q/R ratio or \geq 1 mm initial de decrease in event ECG compared with corresponding eline ECG.
1-2-2	Requires ≥ 50% R-wave amplitu lead(s) of bas	increase in event ECG Q/R ratio or \geq 1 mm initial de decrease in event ECG compared with corresponding eline ECG.
1-2-3	Requires ≥ 1 m compared with	m decrease in event ECG initial R-wave amplitude corresponding lead(s) of baseline ECG.

ARIC PROTOCOL 5. Electrocardiography - Visit 4 VERSION 4.0 09/97

A - 53

- 1-2-4 Requires > 50% increase in lead III Q/R ratio of event ECG or > 1 mm initial R-wave amplitude decrease in lead III of event ECG compared with lead III of Baseline ECG. In lead AVF of the baseline, ECG, the majority of beats must have a Q-wave < 1 mm.
- 1-2-5 Requires \geq 50% increase in lead aVF Q/R ratio of event ECG or \geq 1 mm initial R-wave amplitude decrease in lead aVF of event ECG compared with lead aVF of baseline ECG.
- 1-2-7 Requires \geq 1 mm decrease in event ECG initial R-wave amplitude compared with corresponding lead(s) of baseline ECG (use V3).
- 1-2-8 Requires \geq 1 mm decrease in event ECG initial R-wave amplitude in the "lead to the left" compared with corresponding lead of baseline ECG.
- 1-3-1 Requires \geq 50% increase in event ECG Q/R ratio or \geq 1 mm initial R-wave amplitude decrease in event ECG compared with corresponding lead(s) of baseline ECG.
- 1-3-2 Requires \geq 1 mm decrease in event ECG initial R-wave amplitude compared with corresponding lead(s) of baseline ECG (use V2).
- 1-3-3 Requires \geq 50% increase in lead aVL Q/R ratio of event ECG or \geq 1 mm initial R-wave amplitude decrease in lead aVL of event ECG compared with lead aVL of baseline ECG.
- 1-3-4 Requires \geq 50% increase in lead III Q/R ratio of event ECG or \geq 1 mm initial R-wave amplitude decrease in lead III of event ECG compared with lead III of baseline ECG. In lead AVF of the baseline ECG, the majority of beats must have Q < 1 mm.
- 1-3-5 Requires > 50% increase in lead aVF Q/R ratio of event ECG or > 1mm initial R-wave amplitude decrease in lead aVF of event ECG compared with lead aVF of baseline ECG.
- 1-3-6 Requires \geq 1 mm decrease in initial R-wave amplitude in either III or aVF of event ECG compared with leads III or aVF of baseline ECG.

ST Depression Code - Increase

4-1 or Requires 100% increase in event ST depression compared with 4-2 or 4-3 corresponding lead group of the baseline ECG.

T-wave Inversion Code - Increase

5-1 or Requires 100% increase in event T-wave inversion compared with 5-2 or 5-3 corresponding lead group of the baseline ECG.

ST Elevation Code - Increase

9-2 Requires 100% increase in ST elevation on event compared with the corresponding lead group of the baseline ECG. However, if a 9-2 is coded in V5 on either ECG, use V5 on both ECGs to make the comparison.

A - 54

ST Depression Code - Decrease

4-1 or Requires 100% decrease in ST-depression in event ECG compared with 4-2 corresponding lead group of the baseline ECG.

T-wave Inversion Code - Decrease

5-1 or Requires 100% decrease in T-wave inversion in event ECG compared 5-2 with corresponding lead group of the baseline ECG.

ST Elevation Code - Decrease

- 9-2 Requires 100% decrease in ST-elevation in event ECG compared with corresponding lead group of the baseline ECG. However, if a 9-2 is coded in V5 on either ECG, use V5 on both ECGs to make the comparison.
- * Majority rules applies for all codes. (Final pattern in event based on majority vs. final pattern in baseline based on majority).

• .

.

7

SERIAL CHANGE	CODING SCREEN
ID: 1237362 Shipment Lot Baseline 163 003 Follow-up 163 003	Visit No.: T Hospital/Clinic: T
ST DEPRESSION	4XX
Condition No. 07	
ĬLG	
Baseline 4-3	
Follow-up 4-1-2	
Change 3	
1=Increase 3=No Change	4=Tech Prob OK CANCEL

,

PROTOTYPE

ARIC Hospital Surveillance ECG Classification ID: __-__ First ECG . Last ECG of day 3 . Date of ECG:___/___/ 1. ECG not classified because of a Suppression Pattern A. Check one: 2. ECG not classified because Uncodable 3. ECG classified below B. Check one: Does ECG have 7-1-1 or 7-2-1? 1. NO . 2. YES (specify. C. Check one: (Look for 1. first, then 2.) LEAD CHARACTERISTICS see note below) ALSO MUST HAVE * _ _ Τ QS Pattern I or V6 Q => 0.03 sec I or V6 Q => 0.02 sec Q/R ratio => 1/3 in same beats AVL Q => 0.04 sec R amp. => 3mm in same beats Q => 0.02 sec Q/R ratio => 1/5 in same beats I or V6 2. AVL Q => 0.03 sec R amp. => 3mm in same beats I AND AVL AND V6 -- NONE OF THE ABOVE 3. ------_____ D. Check one: (Look for 1. first, then 2.) II QS Pattern II Q => 0.03 sec II 1. Q => 0.02 sec Q/R ratio => 1/3 in same beats lead III Q => 0.04 sec Q => 1mm deep in majority in AVF AVF Q => 0.04 BEC --Q/R ratio => 1/5 in same beats II Q => 0.02 sec 2. Q => 0.03 sec lead III Q => 1mm deep in majority in AVF QS Pattern *OS Pattern in AVF lead III AVE Q => 0.03 sec --II AND III AND AVE -- NONE OF THE ABOVE 3 E. Check one: (Look for 1. first, then 2.) ٧1 Q => 0.04 sec V1 QS Pattern QS Pattern in V2 AND V3 AND V4 ۷1 QS Pattern *QS Pattern in V2 AND V3 any of Q => 0.03 sec --- $V_{2} - V_{5}$ Q => 0.02 sec Q/R ratio => 1/3 in same beats V1 1. Initial R in maj. QS Pattern in V2 ٧2 QS Pattern in V3 any Initial R any Initial R any Initial R V3 V4 OS Pattern in V4 OS Pattern in V5 **V**5 any Initial R **GS Pattern in V6** "QS Pattern in V2 QS Pattern **V1** any of V2 - V5 Q => 0.02 sec Q/R ratio => 1/5 in same beats **Initial R <= 2mm in V2 (Init. R's ٧1 Initial R > 2mm **Initial R <= 2mm in V3 ٧2 Initial R > 2mm in ALL ##Initial R <= 2mm in V4</pre> ٧3 Initial R > 2mm beats of ٧4 **Initial R <= 2mm in V5 BOTH Initial R > 2mm **Initial R <= 2mm in V6 ۷5 Initial R > 2mm leads.) . . . 3. V1 AND V2 AND V3 AND V4 AND V5 -- NONE OF THE ABOVE ^a Do not look for this if ECG has 7-1-1 (Left Bundle Branch Block) ^a Do not look for this if ECG has 7-1-1 OR 7-2-1 (Right BBB)

ARIC PROTOCOL 5. Electrocardiography - Visit 4. VERSION 4.0 09/97

ARIC ECG TECHNICIAN PROCEDURE REVIEW

.

This form is required for ECG technician certification, recertification, and quality control. It is to be completed by the ECG training supervisor by observing the ECG technician taking an ECG recording. Quality control observations should occur every six months.

The ECG training supervisor should not make any comments during the recording.

I. Identifying Information

1.	Field Center:	
2.	ECG Technician:	Tech. No.
3.	ECG Supervisor:	Tech. No.
4.	Date://	
5.	Biannually: January	July (19)

Appendix Q

A - 5	59
-------	----

ECG Technician Procedure Review (cont'd)

		Yes	3	No		Comments
1.	Subject asked to disrobe to waist only if back-opening gown worn.	()	()	
2.	Subject instructed to lie on the record- ing bed with arms relaxed at the sides.	()	()	
з.	Limb leads correctly marked.	()	()	
4.	Electrode areas wiped with alcohol, then with a gauze pad.	ť)	()	
5.	Limb electrodes placed with the tabs in the correct positions.	()	()	
6.	Electrodes massaged in a small circular motion.	()	()	
7.	V2 position correctly marked.	()	()	
8.	V1 position correctly marked.	()	()	
9.	E point position correctly marked.	()	()	
10.	V6 position correctly marked using chest square.	()	Ć)	
11.	Place the chest quare firmly on the lower sternum at location E and at location V6.	()	()	
12.	Read the distance OE to the nearest 0.5 cm. Write down on scratch paper.	(`)	()	
13.	Read the distance OV6 to the nearest 0.5 cm. Write down on scratch pater.	()	()	
14.	V4 position correctly marked using tape measure.	()	()	
15.	V3 position correctly marked using a flexible ruler.	()	()	
16.	V5 position correctly marked using a flexible ruler.	()	()	
17.	Electrodes applied as in steps 3-6.	()	()	
18.	Appropriate leadwire clipped to each electrode.	()	()	
19.	Participant information entered into the MAC PC according to Appendix 1.	()	()	·

A - 60

ECG Technician Procedure Review (cont'd)

		Yes	3	No		Comments
20.	Electrodes and leadwires checked.	()	()	,
21.	Subject asked to relax, lie quietly.	()	()	
22.	Electrodes on skin 2-5 minutes before taking ECG.	()	()	•
23.	MAC PC display watched for error messages.	()	()	
24.	If error message(s): Electrode contacts and leadwires checked, display observed again.	()	()	
25.	If display counts past 45: Repeat skin preparation using 2 strokes with fine sandpaper. Replace with new electrodes on limb leads first, if necessary replace all.	(>	()	
26.	ECG tracing removed from the MAC PC.	()	()	·
27.	ECG examined for baseline drift, noise 60-cycle interference and muscle tremor.	()	()	
28.	When technically inadequate, ECG re-recorded until an acceptable recording is achieved.	()	()	
29.	Electrodes removed.	()	()	

-- -- - -

.

A	pr	æ	n	d:	iл	: :	R	ł

ARIC ECG CERTIFICATION

(To be filled in by Field Center)

ECG Technician Name:

Number:

Field Center:

Date Certification Tracings Taken: __/__/__

Instructions:

Obtain three 12-lead resting ECGs as specified in the ARIC ECG Procedures. Write the Technician name on the ECG, the Technician number must be printed by the MAC PC next to the word Room.

Send the ECGs and one copy of this form to the ARIC ECG Reading Center: ARIC ECG Reading Center-Minneapolis, Division of Epidemiology, University of Minnesota, School of Public Health, 1300 S. 2nd Street, Suite 300, Minneapolis, MN 55454-1015.

Notification of the technician's certification status is made by the Coordinating Center upon receipt of this completed form from the ECG Reading Center.

(To be filled	in by ECG Coding Center)					
Date Tracings Received://						
Comments:						
<u></u>						
Certified	YES	Signature of Certifying Agent				
	NO	// Date				
Date Sent to	Coordinating Center:	//				
Date Sent to	Field Center:	//				

I. ECG Coding Center Procedures

The Coding Lab supervisor manages the sending and receiving of the Marquette ECG simulator. Each ARIC Field Center receives the ARIC simulator once every three months. The simulator is sent via Certified Mail, return receipt requested.

Upon receiving a calibration ECG from a Field Center, the Coding Lab supervisor measures the waves required in the Calibration Check form (Appendix V2). If there is wave distortion compared to the ECG taken at the ECG Coding Center on February 20, 1987. The Coding Lab Supervisor contacts the Field Center about appropriate action.

II. ARIC Field Center Procedures

Within two days of receiving the simulator, take one noise-free 12-lead ECG following the instructions below.

Instruction for taking a 12-lead ECG using the Marquette ECG Simulator:

- 1. Make sure the ECG Simulator switch is above "off" unless actually in use. Leaving it "on" drains the battery.
- Check the battery: push the switch to "test". The yellow light should go on. If it doesn't, unscrew the back of the simulator and replace the old battery with the new battery included in the mailing.
- 3. Remove the adaptor wires (clips) from the lead wire plugs.
- 4. Plug each lead wire into the simulator in its proper hole.
- 5. Turn the Heart Rate knob all the way to the left so the white line is at the number 68 (as in 'beats per minute'). Don't try to line up the line with the dot, just turn it all the way left.
- 6. Press F1 (PatInfo).
- 7. For Last Name: CALIBRATION TEST.
- 8. For First Name: Site Number (MN = 5, NC = 6, MD = 7, MS = 8)
- 9. For ID number put Technician ID.
- 10. Press Return.
- 11. Press the STOP symbol when it asks for Referred by:
- 12. Now the screen is back to the Main Menu.
- 13. Turn on the ECG Simulator or else you will get a flat line!
- 14. Press the 12-lead Record key. Machine will take, print, and store an ECG.
- 15. Turn off the ECG Simulator.

II.

ARIC Field Center Procedures (continued)

If you have trouble getting a noise-free ECG, try twisting the plugs in their holes and take another ECG. Otherwise, there might be something wrong with your Acquisition Module (the white box with all the lead wires coming out of it).

a. Phone the Coding Center and we will send you our Acquisition Module.

b. Try taking another ECG using out module.

- c. If the tracing is better, contact Marquette about replacing your module.
- d. If you are still getting lots of noise, take the appropriate steps to have your machine serviced.

Do not take a 2-minute rhythm strip using the simulator.

Transmit the Calibration ECG with your next batch to EPICARE. Delete it upon confirmation.

Return the simulator and ONLY ONE 12-lead ECG (the best one if you took more than one) immediately via Certified Mail, return receipt requested to:

ECG Reading Center Division of Epidemiology University of Minnesota 1300 S. 2nd Street Suite 300 Minneapolis, MN 55454-1015

* (Please pack the simulator very carefully!)

ARIC PROTOCOL 5. Electrocardiography - Visit 4. VERSION 4.0 09/97

.

Appendix S

.

Marquette ECG Simulator Measurements					
Study:					
Location of Clinic: Date of ECG:/					
Type of Electrocardiograph:					
Simulator used: ARIC TOMHS					
PAPER SPEED:					
Overall: Measure from the peak of the R of the first complete R-wave in Lead I to the peak of the 6th R-wave, (5 intervals).					
mm / 5 intervals = =					
mm / interval overall HR					
Short Term: Measure interval between first and second complete R-waves.					
mm =					
lst interval Short Term HR					
PR Duration: Measure the PR duration of 3 beats in Lead II to the nearest 0.25 mm.					
(+ +) / 3 = average PR duration					
VOLTAGE CALIBRATION:					
Measure the last 3 complete waves of the lead in question. If there are only 2 complete waves then divide by 2, instead of 3, to get the average. The beats themselves do not have to be complete.					
R-wave in I: (+ +) / 3 =					
R-wave in II: (+ +) / 3 =					
R-wave in III: (+ +) / 3 =					
Calibration: (+ +) / 3 =					
T-wave in II: (+ +) / 3 =					
S-wave in V1: (+ +) / 3 =					
FREQUENCY RESPONSE:					
Compare closely with the ECG taken by the same simulator on the Floater MAC PC on Feb. 20, 1987. Note especially ST segment distortion.					
Satisfactory? YES NO					
If NO show to DR. Prineas or Dr. Crow.					
Comment:					

Appendix T

Definitions of Electrocardiographic Criteria

The ECG series is assigned the highest category for which criteria are met, i.e., Evolving Diagnostic ECG patterns are greater than Diagnostic ECG patterns are greater than Evolving ST-T patterns are greater than Equivocal ECG patterns are greater than Other are greater than Uncodable.

Evolving ECG Patterns (Evolving Diagnostic and Evolving ST-T):

- Δ. Two or more recordings are needed for these classifications. в.
 - Changes must occur within lead groups i.e., lateral
- (I,aVL,V6), inferior (II,III,aVF), or anterior (V1-V5). Changes must be confirmed for <u>all</u> codes by Serial ECG C comparison. Example: reference ECG: 1-3-4 4-0 5-0 9-0

1-2-4	4-0	5-2	9-0	
				Pattern:
Inc.		Inc.		ED3 (Evolving Diag.)
No Inc.		Inc.		EV3 (Evolving ST-T)
Inc.		No Inc.		D1 (Diagnostic ECG)
No Inc.		No Inc.		D1 (Diagnostic ECG)
	1-2-4 Inc. No Inc. Inc. No Inc.	1-2-4 4-0 Inc No Inc Inc No Inc	1-2-4 4-0 5-2 Inc Inc. No Inc Inc. Inc No Inc. No Inc No Inc.	1-2-4 4-0 5-2 9-0 Inc. Inc. No Inc. Inc. Inc. No Inc. No Inc. No Inc.

- To be considered Evolving Diagnostic (pattern ED3) both the 1-2-4 and the 5-2 must be determined to be Significant Increase by Serial Change rules. If the 1-2-4 change is not Significant Increase and the 5-2 change is Significant Increase, then the change would fit Evolving ST-T (pattern EV3). If the 5-2 change is not Significant Increase, then the pattern would be Diagnostic ECG (pattern D1) because of the 1-2-4, regardless of whether or not the 1-2-4 change is Significant Increase. The complexity of this algorithm precludes determination by Minnesota Coders. Determination is made by computer algorithm.
- D. The reference ECG for Cohort Field Center Visits is the ECG taken during the first visit. The reference ECG for Cohort Hospital ECGs or Surveillance Hospital ECGs is the earliest ECG of that hospitalization.
- E. Serial ECG Significant Decrease is determined only for cohort hospital ECGs and only for 4-, 5- and 9-2 codes.

Definition of Terms:

No Q Code - No 1-x-x or 1-2-6 Diagnostic Q Code - Minnesota codes 1-1-1 through 1-2-5 plus 1-2-7 Equivocal Q Code - Minnesota code 1-2-8 or any 1-3-x code Major ST-Segment Depression - Minnesota code 4-1-1, 4-1-2, or 4-2 Major T-Wave Inversion - Minnesota code 5-1 or 5-2' ST-Segment Elevation - Minnesota code 9-2

Evolving Diagnostic ECG:

- ED1. No Q-code, (or a 1-2-6)* in baseline ECG followed by a record with a 1-1-1 to 1-2-5 or 1-2-7, confirmed as a significant increase. OR A 1-2-8 or any 1-3-X code in baseline ECG followed by a record with any 1-1-X code, confirmed as a significant increase.
- ED2. (A 1-2-8 or any 1-3-x code) and no major ST depression (4-1-x or 4-2) in baseline ECG followed by a record with a 1-2-1 to 12-5 or 1-2-7 PLUS a major ST depression (4-1-X or 4-2), confirmed as a significant increase.

- ED3. (A 1-2-8 or any 1-3-x code) and no major ST depression (4-1-X or 4-2) in baseline ECG followed by a record with a [1-2-1 to-1-2-5 or 1-2-7 **PLUS** a major T-wave inversion (5-1 or 5-2)], confirmed as a significant increase.
- ED4. (A 1-2-8 or any 1-3-x code) and no ST elevation (9-2) in baseline ECG followed with a record with a 1-2-1 to 1-2-5 or 1-2-7 **PLUS** an ST segment elevation (9-2), confirmed by a significant increase.
- ED5. No Q-code (or a 1-2-6)* and no 4-1-X or 4-2 in baseline ECG followed by a record with (a 1-2-8 or any 1-3-x code) **PLUS** 4-1-X or 4-2, confirmed as a significant increase.
- ED6. No Q-code (or a 1-2-6)* and no 5-1 or 5-2 in baseline ECG followed by a record with (1-2-8 or any 1-3-x code) **PLUS** a 5-1 or 5-2, confirmed as a significant increase.
- ED7. No Q-code (or a 1-2-6)* and no 9-2 in baseline ECG followed by a record with (1-2-8 or any 1-3-x code) **PLUS** a 9-2, confirmed as a significant increase.

*For Serial change comparison, a 1-2-6 is considered no Q-code.

Evolving ST-T Pattern:

(This diagnosis cannot be assigned if a 7-1-1 or 7-2-1 or 7-4 code is present)

EV1. If a reference ECG has either a 4-0 (no 4-code), 4-4 or 4-3 present in some lead group and is followed by a record with either a 4-1-1, 4-1-2, or 4-2 in that same lead group, and the code increase is confirmed by visual comparison, then EV1 is positive. OR If a reference ECG has a 4-2 present in some lead group and is followed by a record with a 4-1-2 in that same lead group, and the code increase is confirmed by visual comparison, then EV1 is positive. OR For hospital ECGs only, if the earliest hospital ECG has either a 4-1-1, 4-1-2, or 4-2 present in some lead group and is followed by an event record with either a 4-0, 4-4, or 4-3 in the same lead group, and the code decrease is confirmed by visual comparison, then EV1 is positive. OR For hospital ECGs only, if the earliest hospital ECG has a 4-1-2 present in some lead group and is followed by an event record with a 4-2 in the same lead group, and the code decrease is confirmed by visual comparison, then EV1 is positive. PLUS No 7-1-1, 7-2-1, or 7-4 present in either ECG. In addition, either no Qcode in both the reference ECG and the follow-up ECG OR Q-code(s) present in reference ECG or follow-up ECG but no significant increase in Q codes found. EV2. If a reference ECG has either a 4-2 or 4-1-2 present in some lead group and is followed by a record with a 4-1-1 in that same lead group, and the code increase is confirmed by visual comparison, then EV2 is positive. OR For hospital ECGs only, if the earliest hospital ECG has a 4-1-1 present in some lead group and is followed by an event record with either a 4-1-2or 4-2 in the same lead group, and the code decrease is confirmed by visual comparison, then EV2 is positive. PLUS No 7-1-1, 7-2-1, or 7-4 present in either ECG. In addition, either no Q-

code in both the reference ECG and the follow-up ECG OR Q-code(s) present

A - 66

found.

in reference ECG or follow-up ECG but no significant increase in Q codes found.

EV3. If a reference ECG has either a 5-0, 5-4 or 5-3 present in some lead group and is followed by a record with either a 5-2 or 5-1 in that same lead group, and the code increase is confirmed by visual comparison, then EV3 is positive. OR For hospital ECGs only, if the earliest hospital ECG has either a 5-1 or 5-2 present in some lead group and is followed by an event record with either a 5-0, 5-4 or 5-3 in the same lead group, and the code decrease is confirmed by visual comparison, then EV3 is positive. Plus No 7-1-1, 7-2-1, or 7-4 present in either ECG. In addition, either no Q-code in both the reference ECG and the follow-up ECG OR Q-code(s) present in reference ECG or follow-up ECG but no significant increase in Q codes found.
EV4. If a reference ECG has a 5-2 present in some lead group and is followed

by a record with a 5-1 in that same lead group, and the code increase is confirmed by visual comparison, then EV4 is positive. OR For hospital ECGs only, if the earliest hospital ECG has a 5-1 present in some lead group and is followed by an event record with a 5-2 in the same lead group, and the decrease is confirmed by visual comparison, then EV4 is positive. PLUS No 7-1-1, 7-2-1, or 7-4 present in either ECG. In addition, either no Q-code in both the reference ECG and the follow-up ECG OR Q-code(s) present in reference ECG or follow-up ECG but no significant increase in Q codes found.

EV5. If a reference ECG has either a 9-0 or 9-2 present in some lead group and is followed by a record with a 9-2 in that same lead group, and the code increase is confirmed by visual comparison, then EV5 is positive. OR For hospital ECGs only, if the earliest hospital ECG has a 9-2 present in some lead group and is followed by an event record with either a 9-2 or 9-0 in the same lead group, and the code decrease is confirmed by visual comparison, then EV5 is positive. PLUS No 7-1-1, 7-2-1, or 7-4 present in either ECG. In addition, either no Qcode in both the reference ECG and the follow-up ECG OR Q-code(s) present in reference ECG or follow-up ECG but no significant increase in Q codes

EV6. If a reference ECG has a 4-1-1 present in some lead group and is followed by a record with a 4-1-1 in that same lead group, and the code increase is confirmed by visual comparison, then EV6 is positive. OR For hospital ECGs only, if the earliest hospital ECG has a 4-1-1 present in some lead group and is followed by an event record with a 4-1-1 in the same lead group, and the code decrease is confirmed by visual comparison, then EV6 is positive. PLUS No 7-1-1, 7-2-1, or 7-4 present in either ECG. In addition, either no Qcode in both the reference ECG and the follow-up ECG OR Q-code(s) present in reference ECG or follow-up ECG but no significant increase in Q codes found. EV7. If a reference ECG has a 5-1 present in some lead group and is followed by a record with a 5-1 in that same lead group, and the code increase is confirmed by visual comparison, then EV7 is positive. OR

For hospital ECGs only, if the earliest hospital ECG has a 5-1 present in some lead group and is followed by an event record with a 5-1 in the same lead group, and the code decrease is confirmed by visual comparison, then EV7 is positive. PLUS

No 7-1-1, 7-2-1, or 7-4 present in either ECG. In addition, either no Q-code in both reference ECG and the follow-up ECG OR Q-code(s) present in reference ECG or follow-up ECG but no significant increase in Q codes found.

EV8. If a reference ECG has a 5-2 present in some lead group and is followed by a record with a 5-2 in that same lead group, and the code increase is confirmed by visual comparison, then EV8 is positive. OR For hospital ECGs only, if the earliest hospital ECG has a 5-2 present in some lead group and is followed by an event record with a 5-2 in the same lead group, and the code decrease is confirmed by visual comparison, the EV8 is positive. PLUS No 7-1-1, 7-2-1, or 7-4 present in either ECG. In addition, either no Q-

code in both the reference ECG and the follow-up ECG OR Q-code(s) present in reference ECG or follow-up ECG but no significant increase in Q codes found.

Diagnostic ECG:

(any ECG may be used for this classification)

- D1. An ECG record with any Diagnostic Q-code (Minn. code 1-1-1 through 1-2-5 or 1-2-7).
- D2. An ECG record with ST-segment elevation code 9-2 PLUS (T-wave inversion code 5-1 or 5-2).

Equivocal ECG:

An Equivocal ECG pattern cannot be assigned in the presence of 7-1-1, 7-2-1, or 7-4

- E1. An ECG record with Minn. code 1-2-8 in the absence of 7-3 or any 1-3 code.
- E2. An ECG record with ST-segment depression (code 4-1-x or 4-2 or 4-3).
- E3. An ECG record with T-wave inversion (code 5-1 or 5-2 or 5-3).
- E4. An ECG record with ST-segment elevation code 9-2.

Other ECG:

01. Reference ECG coded 7-1-1.

02. Any ECG coded 7-1-1.

OTHERWISE

O3. Normal ECG(s), defined as 0 in "clear" field of all ECGs.

04. Other findings including 1-2-6.

Appendix T

Uncodable ECG:

U1. Technical errors coded 9-8-1 by Minnesota Code.

,

Absent ECG:

Al. No ECG available for coding.

18. Minnesota Code 1-2-7

Baseline ECG shows initial R-waves $V_1 - V_3$. Event ECG shows QS pattern $V_1 - V_3$, making a 1-2-7 code. Significant ECG pattern change IS confirmed because $\geq 1 \text{ mm}$ R-wave amplitude decrease occurs between the ECGs in lead V_3 .

19. Minnesota Code 1-2-7

Baseline shows small initial R-waves in V_2 and V_3 . Event ECG shows QS pattern $V_1 - V_3$, making a 1-2-7 code. Significant ECG pattern change IS NOT confirmed because < 1 mm R-wave amplitude decrease occurs between the ECGs in V_3 . (Note majority of initial R-waves in V_3 at baseline are < 1 mm.)