Hochberg Multiple Test Procedure Under Negative Dependence

Ajit C. Tamhane
Northwestern University

Joint work with Jiangtao Gou (Northwestern University)

IMPACT Symposium, Cary (NC), November 20, 2014
Outline

Preliminaries

Conservative Simes Test

Multivariate Uniform Distribution Models

Error Rate Control for $n = 2$

Error Rate Control for $n \geq 3$

Error Rate Control Under Negative Quadrant Dependence

Simulation Results

Conclusions
Basic Setup

- Test hypotheses H_1, H_2, \ldots, H_n based on their observed marginal p-values: p_1, p_2, \ldots, p_n.
- Label the ordered p-values: $p(1) \leq \cdots \leq p(n)$ and the corresponding hypotheses: $H(1), \ldots, H(n)$.
- Denote the corresponding random variables by $P(1) \leq \cdots \leq P(n)$.
- Familywise error rate (FWER) strong control (Hochberg & Tamhane 1987):

 $\text{FWER} = \Pr\{\text{Reject at least one true } H_i\} \leq \alpha,$

for all combinations of the true and false H_i's.
Hochberg Procedure

- **Step-up Procedure**: Start by testing $H_{(n)}$. If at the ith step $p(n-i+1) \leq \alpha/i$ then stop & reject $H_{(n-i+1)}, \ldots, H_{(1)}$; else accept $H_{(n-i+1)}$ and continue testing.

\[
\begin{align*}
H_{(1)} & \leq H_{(2)} & \leq \cdots & \leq H_{(n-1)} & \leq H_{(n)} \\
p_{(1)} & \leq p_{(2)} & \leq \cdots & \leq p_{(n-1)} & \leq p_{(n)} \\
\frac{\alpha}{n} & \leq \frac{\alpha}{n-1} & \cdots & \leq \frac{\alpha}{2} & \leq \frac{\alpha}{1}
\end{align*}
\]

- Known to control FWER under independence and (certain types of) positive dependence among the p-values.
- Holm (1979) procedure operates exactly in reverse (step-down) manner and requires no dependence assumption (since it is based on the Bonferroni test), but is less powerful.
Closure Method

- Marcus, Peritz & Gabriel (1976).
- Test all nonempty intersection hypotheses \(H(I) = \bigcap_{i \in I} H_i \), using local \(\alpha \)-level tests where \(I \subseteq \{1, 2, \ldots, n\} \).
- Reject \(H(I) \) iff all \(H(J) \) for \(J \supseteq I \) are rejected, in particular, reject \(H_i \) iff all \(H(I) \) with \(i \in I \) are rejected.
- Strongly controls FWER \(\leq \alpha \).
- Ensures coherence (Gabriel 1969): If \(I \subseteq J \) then acceptance of \(H(J) \) implies acceptance of \(H(I) \).
- Stepwise shortcuts to closed MTPs exist under certain conditions.
- If the Bonferroni test is used as local \(\alpha \)-level test then the resulting shortcut is the Holm step-down procedure.
Closure Method: Example for $n = 3$
Simes Test

- Simes Test: Reject $H_0 = \bigcap_{i=1}^{n} H_i$ at level α if
 $$p(i) \leq \frac{i\alpha}{n} \text{ for some } i = 1, \ldots, n.$$
- More powerful than the Bonferroni test.
- Based on the Simes identity: If the P_i's are independent then under H_0:
 $$\Pr \left(P(i) \leq \frac{i\alpha}{n} \text{ for some } i \right) = \alpha.$$
- Simes test is conservative under (certain types of) positive dependence: Sarkar & Chang (1997) and Sarkar (1998).
Hommel Procedure Under Negative Dependence

- When the Simes test is used as a local α-level test for all intersection hypotheses, the exact shortcut to the closure procedure is the Hommel (1988) multiple test procedure.
- So the Hommel procedure is more powerful than the Holm procedure.
- Since the Simes test controls α under independence/positive dependence but not under negative dependence, the Hommel procedure also controls/does not control FWER under the same conditions.
- Hochberg derived his procedure as a conservative shortcut to the exact shortcut to the closure procedure (i.e., Hommel procedure), so it also controls FWER under independence/positive dependence.
Hochberg Procedure Under Negative Dependence

- The common perception is that the Hochberg procedure may not control FWER under negative dependence.
- So practitioners are reluctant to use it if negative correlations are expected. They use the less powerful but more generally applicable Holm procedure.
- But the Hochberg procedure is conservative by construction.
- So, does it control FWER under also under negative dependence?
Conservative Simes Test

- Better to think of the Hochberg procedure as an exact stepwise shortcut to the closure procedure which uses a conservative Simes local α-level test (Wei 1996).
- Conservative Simes test: Reject $H_0 = \bigcap_{i=1}^{n} H_i$ at level α if
 \[p(i) \leq \frac{\alpha}{n - i + 1} \quad \text{for some } i = 1, \ldots, n. \]
- It is conservative because $\alpha/(n - i + 1) \leq i\alpha/n$ with equalities iff $i = 1$ and $i = n$.
- So the question of FWER control under negative dependence by the Hochberg procedure reduces to showing
 \[\Pr \left(P(i) \leq \frac{\alpha}{n - i + 1} \quad \text{for some } i \right) \leq \alpha \]
 under negative dependence.
Conservative Simes Test

- For $n = 2$, the exact Simes test and the conservative Simes test are the same. So both are anti-conservative under negative dependence.
- Does the conservative Simes test remain conservative under negative dependence for $n > 2$?
Multivariate Uniform Distribution Models for P-Values

- Sarkar’s (1998) method, used by Block & Wang (2008) to show the anti-conservatism of the Simes test, does not work for the conservative Simes test since that method requires the critical constants c_{n-i+1} used to compare with $p(i)$ to have the monotonicity property that c_{n-i+1}/i must be nondecreasing in i.

- But for the conservative Simes test, $c_{n-i+1}/i = 1/i(n - i + 1)$ are decreasing (resp., increasing) in i for $i \leq (n + 1)/2$ (resp., $i > (n + 1)/2$).

- To study the performance of the Simes/conservative Simes test under negative dependence we chose to use a multivariate uniform distribution for P-values.

- The distribution should be tractable enough to deal with ordered correlated multivariate uniform random variables.
Normal Model

- Let X_1, \ldots, X_n be multivariate normal with $E(X_i) = 0$, $\text{Var}(X_i) = 1$ and $\text{Corr}(X_i, X_j) = \gamma_{ij}$ ($1 \leq i < j \leq n$).
- Define $P_i = \Phi(X_i)$ where $\Phi(\cdot)$ is the standard normal c.d.f.: one-sided marginal P-value.
- Then $P_i \sim U[0, 1]$ with $\rho_{ij} = \text{Corr}(P_i, P_j)$ a monotone and symmetric (around zero) function of γ_{ij} ($1 \leq i < j \leq n$).

<table>
<thead>
<tr>
<th>γ_{ij} = γ</th>
<th>0</th>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{ij} = ρ</td>
<td>0</td>
<td>0.0955</td>
<td>0.2876</td>
<td>0.4826</td>
<td>0.6829</td>
<td>0.8915</td>
<td>1</td>
</tr>
</tbody>
</table>

- This model is not analytically tractable.
Mixture Model

- U_1, \ldots, U_n i.i.d. $U[0, \beta]$, V_1, \ldots, V_n i.i.d. $U[\beta, 1]$, where $eta \in (0, 1)$ is fixed.
- Independent of the U_i's and V_i's, W is Bernoulli with parameter β. Define

 $$X_i = U_i W + V_i (1 - W) \quad (1 \leq i \leq n).$$

- Let Y_i be independent Bernoulli with parameters π_i and define

 $$P_i = X_i Y_i + (1 - X_i)(1 - Y_i) \quad (1 \leq i \leq n).$$

 Then the P_i are $U[0, 1]$ distributed with

 $$\text{Corr}(P_i, P_j) = \rho_{ij} = 3\beta (1-\beta)(2\pi_i-1)(2\pi_j-1) \quad (1 \leq i < j \leq n).$$

- Note that $-3/4 \leq \rho_{ij} \leq +3/4$ and $\rho_{ij} > 0 \Leftrightarrow \pi_i, \pi_j > 1/2$ or < 1/2.
- This model is also not analytically tractable.
Ferguson’s Model for $n = 2$

- Ferguson (1995) Theorem: Suppose X is a continuous random variable with p.d.f. $g(x)$ on $x \in [0, 1]$. Let the joint p.d.f. of (P_1, P_2) be given by

$$f(p_1, p_2) = \frac{1}{2} [g(|p_1 - p_2|) + g(1 - |1 - (p_1 + p_2)|)] \quad \text{for} \quad p_1, p_2 \in (0, 1).$$

Then P_1, P_2 are jointly distributed on the unit square with $U[0, 1]$ marginals and

$$\rho = \text{Corr}(P_1, P_2) = 1 - 6E(X^2) + 4E(X^3).$$
Ferguson’s Model for $n = 2$

- We chose

$$g(x) = \begin{cases}
U[0, \theta] & \rho = (1 - \theta)(1 + \theta - \theta^2) > 0 \\
U[1 - \theta, 1] & \rho = -(1 - \theta)(1 + \theta - \theta^2) < 0.
\end{cases}$$

- If $\theta = 1$, i.e., $X \sim U[0, 1]$, then $\rho = 0$ for both models.
- If $\theta = 0$ then $\rho = +1$ if $g(x) = U[0, \theta]$ and $\rho = -1$ if $g(x) = U[1 - \theta, 1]$: point mass distributions with all mass at $(0, 0)$ and $(1, 1)$, respectively.
Ferguson’s Model for Bivariate Uniform Distribution

Left Panel: Positive correlation, Right Panel: Negative correlation
Ferguson’s Model for Multivariate Uniform Distribution

- Define the joint p.d.f. as

\[f(p_1, \ldots, p_n) = \sum_{1 \leq i < j \leq n} w_{ij} f_{ij}(p_i, p_j) \]

for \(p_i, p_j \in [0, 1] \) where the \(w_{ij} \) are the mixing probabilities which sum to 1.

- We use \(g_{ij}(x) = U[0, \theta_{ij}] \) or \(g_{ij}(x) = U[1 - \theta_{ij}, 1] \) for +ve and −ve correlations, respectively.

- \(\text{Corr}(P_i, P_j) = \rho_{ij} \) are given by

\[\rho_{ij} = \pm w_{ij} (1 - \theta_{ij})(1 + \theta_{ij} - \theta_{ij}^2). \]
Type I Error of the Simes Test for \(n = 2 \)

Theorem: For the Simes test, \(P = \Pr(\text{Type I Error}) \geq \alpha \) for all \(\rho \leq 0 \) under the Ferguson model with negative dependence.

\[
\max P = \frac{1}{2} \left(1 + \alpha - \sqrt{1 - 2\alpha + \alpha^2/2} \right) > \alpha,
\]

and is achieved at \(\theta = \sqrt{1 - 2\alpha + \alpha^2/2}. \) \(\square \)

- For \(\alpha = 0.05 \), \(\max P = 0.0503 \) when \(\text{Corr}(P_1, P_2) = -0.053 \).

 For the bivariate normal model \(\max P = 0.0501 \) when \(\text{Corr}(P_1, P_2) = -0.184 \). These excesses are negligible.

- We can choose

\[
c_1 = 1, \quad c_2 = \left(1 + \sqrt{\frac{1 - \alpha}{1 - 1.5\alpha}} \right)^{-1} < \frac{1}{2}
\]

to control \(\Pr(\text{Type I Error}) \leq \alpha \) for all \(\rho \leq 0 \) at a negligible loss of power.
Idea of the Proof for $n = 2$

$P = \begin{cases}
\alpha & \text{(a): } 0 < \theta \leq 1 - 2\alpha \\
\alpha + \frac{(1-\theta-2\alpha)^2}{4\theta} & \text{(b): } 1 - 2\alpha < \theta \leq 1 - \frac{3}{2}\alpha \\
\alpha + \frac{1}{2}\alpha^2 - (1-\theta-\alpha)^2}{4\theta} & \text{(c): } 1 - \frac{3}{2}\alpha < \theta \leq 1 - \frac{1}{2}\alpha \\
\alpha + \frac{(1-\theta)^2}{4\theta} & \text{(d): } 1 - \frac{1}{2}\alpha < \theta < 1.
\end{cases}$
Type I Error of Conservative Simes Test for $n = 2$

Plot of type I error vs. $\text{Corr}(P_1, P_2)$ in the bivariate case for Ferguson’s model (solid curve) and Normal model (dashed curve) ($\alpha = 0.10$)
Type I Error of the Conservative Simes Test for $n \geq 3$

Proof of $\max P \leq \alpha$ for all negative correlations under the Ferguson model proceeds in two steps.

- First show that the result is true for $n = 3$. This is quite a laborious proof.
- Then use an induction argument to extend the result to all $n > 3$.
Idea of the Proof for $n = 3$

The rejection region $\{p(3) \leq \alpha/1\} \cup \{p(2) \leq \alpha/2\} \cup \{p(1) \leq \alpha/3\}$ for $n = 3$:

![Diagram](image-url)
Idea of the Proof for $n = 3$

- Slice the rejection region along the p_3-axis as shown above and find the probability of each two-dimensional slice using the results from the $n = 2$ case.
- This results in nine different expressions depending on the θ value for the bivariate distribution.
- Show that all nine expressions $\leq \alpha$. Hence their weighted sum (weighted by the probabilities of the slices) is $\leq \alpha$.
Error Rate Control Under Negative Quadrant Dependence

Theorem: If \((P_1, \ldots, P_n)\) follow a multivariate uniform distribution which is a mixture of bivariate distributions \(f_{ij}(p_i, p_j)\) with mixing probabilities \(w_{ij} > 0\) where all pairs \((P_i, P_j)\) are negatively quadrant dependent then the conservative Simes test controls the type I error at level \(\alpha < 1/2\) for \(n \geq 4\). □

- **Negative Quadrant Dependence (Lehmann 1966):** Two random variables, \(X\) and \(Y\), are said to be negatively quadrant dependent if

 \[
 \Pr \{ (X \leq x) \cap (Y \leq y) \} \leq \Pr (X \leq x) \Pr (Y \leq y).
 \]

- The proof uses an upper bound on \(P(\text{Type I error})\) from Hochberg & Rom (1995).
Simulation Results

We performed simulations of type I error of the conservative Simes test for $n = 3, 5, 7$ for the following cases.

- **Equicorrelated normal model for**
 \[
 \gamma = -0.1/(n-1), -0.5/(n-1), -0.9/(n-1).
 \]

- **Mixture model with** $\beta = 0.1, 0.3, 0.5$ and each $\pi_i = 0.5 \pm \delta$ with $\delta = 0.1, 0.25, 0.4$ (more than half of the $\rho_{ij} < 0$).

- **Product-correlated normal model with the same correlation matrix as the mixture model.**

- **Ferguson model with the same correlation matrix as the mixture model:**
 - Uniform distribution: $g_{ij}(x) = U[0, \theta]$ or $g_{ij}(x) = U[1 - \theta, 1]$.
 - Beta distribution: $g_{ij}(x) = \text{Beta}(r, s)$.

- **All simulations show that the conservative Simes test and hence the Hochberg procedure remain conservative under negative dependence for $n \geq 3$.**
Conclusions

• Showed that the Simes test is anti-conservative under negative dependence using Ferguson’s model for \(n = 2 \). The amount of anti-conservatism is negligibly small.

• Showed that the critical constant \(c_2 \) of this test can be made slightly smaller than \(1/2 \) to control \(P(\text{Type I error}) \) with negligible loss of power.

• Showed that the conservative Simes test remains conservative under negative dependence using Ferguson’s model for \(n \geq 3 \). The amount of conservatism increases with \(n \).

• Future research: Show that the conservative Simes test remains conservative under other negative dependence models, especially under the normal model.